Publications by authors named "Simon D Sun"

2 Publications

  • Page 1 of 1

Neuronal Inactivity Co-opts LTP Machinery to Drive Potassium Channel Splicing and Homeostatic Spike Widening.

Cell 2020 06 2;181(7):1547-1565.e15. Epub 2020 Jun 2.

Department of Neuroscience and Physiology, Neuroscience Institute, NYU Grossman Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA. Electronic address:

Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca-permeable AMPA receptor upregulation, L-type Ca channel activation, enhanced spine Ca transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed ∼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.05.013DOI Listing
June 2020

Planar cell polarity genes Frizzled3a, Vangl2, and Scribble are required for spinal commissural axon guidance.

BMC Neurosci 2016 12 12;17(1):83. Epub 2016 Dec 12.

Department of Biology, Virginia Commonwealth University, 1000 West Cary Street, Richmond, VA, 23284, USA.

Background: A fundamental feature of early nervous system development is the guidance of axonal projections to their targets in order to assemble neural circuits that control behavior. Spinal commissural neurons are an attractive model to investigate the multiple guidance cues that control growth cone navigation both pre- and post-midline crossing, as well as along both the dorsal-ventral (D-V) and anterior-posterior (A-P) axes. Accumulating evidence suggests that guidance of spinal commissural axons along the A-P axis is dependent on components of the planar cell polarity (PCP) signaling pathway. In the zebrafish, the earliest born spinal commissural neuron to navigate the midline and turn rostrally is termed commissural primary ascending (CoPA). Unlike mammalian systems, CoPA axons cross the midline as a single axon and allow an analysis of the role of PCP components in anterior pathfinding in single pioneering axons.

Results: Here, we establish CoPA cells in the zebrafish spinal cord as a model system for investigating the molecular function of planar cell polarity signaling in axon guidance. Using mutant analysis, we show that the functions of Fzd3a and Vangl2 in the anterior turning of commissural axons are evolutionarily conserved in teleosts. We extend our findings to reveal a role for the PCP gene scribble in the anterior guidance of CoPA axons. Analysis of single CoPA axons reveals that these commissural axons become responsive to PCP-dependent anterior guidance cues even prior to midline crossing. When midline crossing is prevented by dcc gene knockdown, ipsilateral CoPA axons still extend axons anteriorly in response to A-P guidance cues. We show that this ipsilateral anterior pathfinding that occurs in the absence of midline crossing is dependent on PCP signaling.

Conclusion: Our results demonstrate that anterior guidance decisions by CoPA axons are dependent on the function of planar cell polarity genes both prior to and after midline crossing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12868-016-0318-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154073PMC
December 2016