Publications by authors named "Silviu Itescu"

59 Publications

RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

Tissue Eng Part A 2018 05 13;24(9-10):740-751. Epub 2017 Nov 13.

1 Department of Surgery, Columbia University Medical Center , New York, New York.

Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2017.0221DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5963542PMC
May 2018

Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of allogeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind randomised trial.

Arthritis Res Ther 2017 08 2;19(1):180. Epub 2017 Aug 2.

Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, VIC, 3004, Australia.

Background: Few clinical trials have investigated the safety and efficacy of mesenchymal stem cells for the management of post-traumatic osteoarthritis. The objectives of this pilot study were to determine the safety and tolerability and to explore the efficacy of a single intra-articular injection of allogeneic human mesenchymal precursor cells (MPCs) to improve clinical symptoms and retard joint structural deterioration over 24 months in patients following anterior cruciate ligament (ACL) reconstruction.

Methods: In this phase Ib/IIa, double-blind, active comparator clinical study, 17 patients aged 18-40 years with unilateral ACL reconstruction were randomized (2:1) to receive either a single intra-articular injection of 75 million allogeneic MPCs suspended in hyaluronan (HA) (MPC + HA group) (n = 11) or HA alone (n = 6). Patients were monitored for adverse events. Immunogenicity was evaluated by anti-HLA panel reactive antibodies (PRA) against class I and II HLAs determined by flow cytometry. Pain, function, and quality of life were assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and SF-36v2 scores. Joint space width was measured from radiographs, and tibial cartilage volume and bone area assessed from magnetic resonance imaging (MRI).

Results: Moderate arthralgia and swelling within 24 h following injection that subsided were observed in 4 out of 11 in the MPC + HA group and 0 out of 6 HA controls. No cell-related serious adverse effects were observed. Increases in class I PRA >10% were observed at week 4 in the MPC + HA group that decreased to baseline levels by week 104. Compared with the HA group, MPC + HA-treated patients showed greater improvements in KOOS pain, symptom, activities of daily living, and SF-36 bodily pain scores (p < 0.05). The MPC + HA group had reduced medial and lateral tibiofemoral joint space narrowing (p < 0.05), less tibial bone expansion (0.5% vs 4.0% over 26 weeks, p = 0.02), and a trend towards reduced tibial cartilage volume loss (0.7% vs -4.0% over 26 weeks, p = 0.10) than the HA controls.

Conclusions: Intra-articular administration of a single allogeneic MPC injection following ACL reconstruction was safe, well tolerated, and may improve symptoms and structural outcomes. These findings suggest that MPCs warrant further investigations as they may modulate some of the pathological processes responsible for the development of post-traumatic osteoarthritis following ACL reconstruction.

Trial Registration: ClinicalTrials.gov ( NCT01088191 ) registration date: March 11, 2010.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13075-017-1391-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541727PMC
August 2017

Immunoselected STRO-3 mesenchymal precursor cells reduce inflammation and improve clinical outcomes in a large animal model of monoarthritis.

Stem Cell Res Ther 2017 02 7;8(1):22. Epub 2017 Feb 7.

Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 5010, Australia.

Background: The purpose of this study was to investigate the therapeutic efficacy of intravenously administered immunoselected STRO-3 + mesenchymal precursor cells (MPCs) on clinical scores, joint pathology and cytokine production in an ovine model of monoarthritis.

Methods: Monoarthritis was established in 16 adult merino sheep by administration of bovine type II collagen into the left hock joint following initial sensitization to this antigen. After 24 h, sheep were administered either 150 million allogeneic ovine MPCs (n = 8) or saline (n = 8) intravenously (IV). Lameness, joint swelling and pain were monitored and blood samples for leukocytes and cytokine levels were collected at intervals following arthritis induction. Animals were necropsied 14 days after arthritis induction and gross and histopathological evaluations were undertaken on tissues from the arthritic (left) and contralateral (right) joints.

Results: MPC-treated sheep demonstrated significantly reduced clinical signs of lameness, joint pain and swelling compared with saline controls. They also showed decreased cartilage erosions, synovial stromal cell activation and angiogenesis. This was accompanied by decreased infiltration of the synovial tissues by CD4 lymphocytes and CD14 monocytes/macrophages. Over the 3 days following joint arthropathy induction, the numbers of neutrophils circulating in the blood and plasma concentrations of activin A were significantly reduced in animals administered MPCs.

Conclusions: The results of this study have demonstrated the capacity of IV-administered MPCs to mitigate the clinical signs and some of the inflammatory mediators responsible for joint tissue destruction in a large animal model of monoarthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13287-016-0460-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297153PMC
February 2017

Optimization of alginate purification using polyvinylidene difluoride membrane filtration: Effects on immunogenicity and biocompatibility of three-dimensional alginate scaffolds.

J Biomater Appl 2016 10 25;31(4):510-520. Epub 2016 Apr 25.

Department of Surgery, Columbia University Medical Center, USA.

Sodium alginate is an effective biomaterial for tissue engineering applications. Non-purified alginate is contaminated with protein, lipopolysaccharide, DNA, and RNA, which could elicit adverse immunological reactions. We developed a purification protocol to generate biocompatible alginate based on (a) activated charcoal treatment, (b) use of hydrophobic membrane filtration (we used hydrophobic polyvinylidene difluoride membranes to remove organic contaminants), (c) dialysis, and finally (d) ethanol precipitation. Using this approach, we could omit pre-treatment with chloroform and significantly reduce the quantities of reagents used. Purification resulted in reduction of residual protein by 70% down to 0.315 mg/g, DNA by 62% down to 1.28 µg/g, and RNA by 61% down to less than 10 µg/g, respectively. Lipopolysaccharide levels were reduced by >90% to less than 125 EU/g. Purified alginate did not induce splenocyte proliferation in vitro. Three-dimensional scaffolds generated from purified alginate did not elicit a significant foreign body reaction, fibrotic overgrowth, or macrophage infiltration 4 weeks after implantation. This study describes a simplified and economical alginate purification method that results in alginate purity, which meets clinically useful criteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328216645952DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479495PMC
October 2016

Reconstitution of degenerated ovine lumbar discs by STRO-3-positive allogeneic mesenchymal precursor cells combined with pentosan polysulfate.

J Neurosurg Spine 2016 May 22;24(5):715-26. Epub 2016 Jan 22.

The Ritchie Centre, MIMR-PHI Institute, Monash University, Clayton, Victoria;

OBJECTIVE Disc degeneration and associated low-back pain are major causes of suffering and disability. The authors examined the potential of mesenchymal precursor cells (MPCs), when formulated with pentosan polysulfate (PPS), to ameliorate disc degeneration in an ovine model. METHODS Twenty-four sheep had annular incisions made at L2-3, L3-4, and L4-5 to induce degeneration. Twelve weeks after injury, the nucleus pulposus of a degenerated disc in each animal was injected with ProFreeze and PPS formulated with either a low dose (0.1 million MPCs) or a high dose (0.5 million MPCs) of cells. The 2 adjacent injured discs in each spine were either injected with PPS and ProFreeze (PPS control) or not injected (nil-injected control). The adjacent noninjured L1-2 and L5-6 discs served as noninjured control discs. Disc height indices (DHIs) were obtained at baseline, before injection, and at planned death. After necropsy, 24 weeks after injection, the spines were subjected to MRI and morphological, histological, and biochemical analyses. RESULTS Twelve weeks after the annular injury, all the injured discs exhibited a significant reduction in mean DHI (low-dose group 17.19%; high-dose group 18.01% [p < 0.01]). Twenty-four weeks after injections, the discs injected with the low-dose MPC+PPS formulation recovered disc height, and their mean DHI was significantly greater than the DHI of PPS- and nil-injected discs (p < 0.001). Although the mean Pfirrmann MRI disc degeneration score for the low-dose MPC+PPS-injected discs was lower than that for the nil- and PPS-injected discs, the differences were not significant. The disc morphology scores for the nil- and PPS-injected discs were significantly higher than the normal control disc scores (p < 0.005), whereas the low-dose MPC+PPS-injected disc scores were not significantly different from those of the normal controls. The mean glycosaminoglycan content of the nuclei pulposus of the low-dose MPC+PPS-injected discs was significantly higher than that of the PPS-injected controls (p < 0.05) but was not significantly different from the normal control disc glycosaminoglycan levels. Histopathology degeneration frequency scores for the low-dose MPC+PPS-injected discs were lower than those for the PPS- and Nil-injected discs. The corresponding high-dose MPC+PPS-injected discs failed to show significant improvements in any outcome measure relative to the controls. CONCLUSIONS Intradiscal injections of a formulation composed of 0.1 million MPCs combined with PPS resulted in positive effects in reducing the progression of disc degeneration in an ovine model, as assessed by improvements in DHI and morphological, biochemical, and histopathological scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3171/2015.8.SPINE141097DOI Listing
May 2016

Evaluation of the safety and tolerability of a high-dose intravenous infusion of allogeneic mesenchymal precursor cells.

Cytotherapy 2015 Sep 15;17(9):1178-87. Epub 2015 Jul 15.

The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia. Electronic address:

Background Aims: Over the past decade, mounting evidence has shown that mesenchymal stromal cells have the potential to exert protective and reparative effects in a variety of disease settings. Clinical trials are being increasingly established to investigate the therapeutic potential of these cells; however, several safety concerns remain to be addressed, of which dosage safety for intravenous administration is paramount. Published safety studies thus far have predominantly been carried out in small-animal models, whereas data for high-dose allogeneic intravenous administration in large-animal models are limited. This study investigates the safety and tolerability of a single high-dose intravenous infusion of 450 million allogeneic ovine mesenchymal precursor cells (oMPCs) in adult sheep.

Methods: Allogeneic oMPCs (n = 450 million) were intravenously administered to 2-year-old castrated male sheep through the use of three different infusion rates. Sheep were intensively monitored for 7 days by means of vital physiological observations (temperature, blood pressure, heart rate, respiratory rate and oxygen saturation) as well as venous and arterial blood analysis. In addition, full post mortem examination was performed in all animals.

Results: A single high dose of intravenously administered cells was well tolerated, with no serious adverse effects reported. No physiologically significant changes in vital signs, oxygen saturation, blood gas analysis or clinical pathology were observed over the duration of the study.

Conclusions: Intravenous delivery of a single high-dose infusion of oMPCs is well tolerated in a large animal model. This study provides additional safety evidence for their intravenous use in future human clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2015.05.007DOI Listing
September 2015

A Phase II Dose-Escalation Study of Allogeneic Mesenchymal Precursor Cells in Patients With Ischemic or Nonischemic Heart Failure.

Circ Res 2015 Aug 6;117(6):576-84. Epub 2015 Jul 6.

From the Stem Cell Center (E.C.P., G.V.S., Y.Z., J.T.W.), Adult Cardiology (E.C.P., G.V.S., J.T.W.), Texas Heart Institute, Houston; Borow Consulting Group, LLC, Bryn Mawr, PA (K.M.B.); Division of Cardiology, School of Medicine, University of California San Diego (A.N.D.M.); Heart and Vascular Institute, Center for Heart and Vascular Quality, Outcomes, and Clinical Research, University of Pittsburgh Medical Center, PA (O.C.M.); Heart and Vascular Institute, Swedish Medical Center, Seattle, WA (P.P.H.); Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, MN (J.H.T.); Monash University, Melbourne, Australia (H.K.); Mesoblast, Inc, New York (D.S.); Mesoblast, Inc, Melbourne, Victoria, Australia (S.I.); and Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.).

Rationale: Allogeneic mesenchymal precursor cells (MPCs) have been effective in large animal models of ischemic and nonischemic heart failure (HF).

Objective: To evaluate the feasibility and safety of 3 doses (25, 75, or 150 million cells) of immunoselected allogeneic MPCs in chronic HF patients in a phase 2 trial.

Methods And Results: We sequentially allocated 60 patients to a dosing cohort (20 per dose group) and randomized them to transendocardial MPC injections (n=15) or mock procedures (n=5). The primary objective was safety, including antibody testing. Secondary efficacy end points included major adverse cardiac events (MACE; cardiac death, myocardial infarction, or revascularization), left ventricular imaging, and other clinical-event surrogates. Safety and MACE were evaluated for up to 3 years. MPC injections were feasible and safe. Adverse events were similar across groups. No clinically symptomatic immune responses were noted. MACE was seen in 15 patients: 10 of 45 (22%) MPC-treated and 5 of 15 (33%) control patients. We found no differences between MPC-treated and control patients in survival probability, MACE-free probability, and all-cause mortality. We conducted a post hoc analysis of HF-related MACE (HF hospitalization, successfully resuscitated cardiac death, or cardiac death) and events were significantly reduced in the 150 million MPC group (0/15) versus control (5/15; 33%), 25 million MPC group (3/15; 20%), and 75 million MPC group (6/15; 40%); the 150 million MPC group differed significantly from all groups according to Kaplan-Meier statistics >3 years (P=0.025 for 150 million MPC group versus control).

Conclusions: Transendocardial injections of allogeneic MPCs were feasible and safe in chronic HF patients. High-dose allogeneic MPCs may provide benefits in this population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.115.306332DOI Listing
August 2015

Effect of mesenchymal precursor cells on the systemic inflammatory response and endothelial dysfunction in an ovine model of collagen-induced arthritis.

PLoS One 2015 7;10(5):e0124144. Epub 2015 May 7.

Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia.

Background And Aim: Mesenchymal precursor cells (MPC) are reported to possess immunomodulatory properties that may prove beneficial in autoimmune and other inflammatory conditions. However, their mechanism of action is poorly understood. A collagen-induced arthritis model has been previously developed which demonstrates local joint inflammation and systemic inflammatory changes. These include not only increased levels of inflammatory markers, but also vascular endothelial cell dysfunction, characterised by reduced endothelium-dependent vasodilation. This study aimed to characterise the changes in systemic inflammatory markers and endothelial function following the intravenous administration of MPC, in the ovine model.

Methods: Arthritis was induced in sixteen adult sheep by administration of bovine type II collagen into the hock joint following initial sensitisation. After 24h, sheep were administered either 150 million allogeneic ovine MPCs intravenously, or saline only. Fibrinogen and serum amyloid-A were measured in plasma to assess systemic inflammation, along with pro-inflammatory and anti-inflammatory cytokines. Animals were necropsied two weeks following arthritis induction. Coronary and digital arterial segments were mounted in a Mulvaney-Halpern wire myograph. The relaxant response to endothelium-dependent and endothelium-independent vasodilators was used to assess endothelial dysfunction.

Results And Conclusion: Arthritic sheep treated with MPC demonstrated a marked spike in plasma IL-10, 24h following MPC administration. They also showed significantly reduced plasma levels of the inflammatory markers, fibrinogen and serum amyloid A, and increased HDL. Coronary arteries from RA sheep treated with MPCs demonstrated a significantly greater maximal relaxation to bradykinin when compared to untreated RA sheep (253.6 ± 17.1% of pre-contracted tone vs. 182.3 ± 27.3% in controls), and digital arteries also demonstrated greater endothelium-dependent vasodilation. This study demonstrated that MPCs given intravenously are able to attenuate systemic inflammatory changes associated with a monoarthritis, including the development of endothelial dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124144PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423911PMC
February 2016

Allogeneic mesenchymal progenitor cells for posterolateral lumbar spine fusion in sheep.

Spine J 2014 Mar 23;14(3):435-44. Epub 2013 Oct 23.

Colorado State University, College of Veterinary Medicine, Department of Clinical Sciences, 300 W Drake Rd, Fort Collins, CO 80525, USA.

Background Context: Osteoconductive porous ceramic bone graft materials supplemented with mesenchymal precursor cells (MPC) derived from autologous bone marrow aspirates have been shown to stimulate successful interbody and posterolateral spine fusion in preclinical models. Recent advances in immunomagnetic cell sorting have enabled purification and isolation of pluripotent stem cells from marrow aspirates and have expanded stem cell technology to allogeneic cell sources. Allogeneic MPC technology combined with appropriate synthetic biomaterial carriers could provide both the osteogenic and osteoconductive components needed for successful posterolateral spine fusion without the need for autologous bone harvest or expensive recombinant protein technology.

Purpose: To determine the safety and efficacy of a hydroxyapatite:tricalcium phosphate graft material supplemented with allogeneic mesenchymal precursor cells in posterolateral lumbar spine fusion using an ovine model.

Study Design: Skeletally mature ewes underwent single-level instrumented posterolateral lumbar spine fusion using either autograft (AG), hydroxyapatite:tricalcium phosphate carrier (CP), or CP supplemented with allogeneic mesenchymal progenitor cells (MPCs). Three doses of MPCs were evaluated: 25 × 10⁶ cells (low dose, LD), 75 × 10⁶ cells (mid dose, MD), and 225 × 10⁶ cell (high dose, HD). Animals survived for either 4 or 9 months.

Methods: Plain radiographs were acquired and scored for bridging bone at regular intervals during healing to monitor fusion development. Hematology, coagulation, and serum chemistry were monitored at regular intervals throughout the study to monitor animal health. After necropsy, computed tomography, high-resolution radiography, biomechanical testing, organ pathology, bone histopathology, and bone histomorphometry were conducted to monitor the safety and ascertain the efficacy of MPC treatment.

Results: MPC treatment in this spine fusion model resulted in no observed adverse systemic or local tissue responses. Radiographically, fusion scores for MPC-treated animals were uniformly higher compared with those treated with carrier alone (CP) after 3 months and continued the same trend throughout 9 month of healing. Quantitative computed tomography confirmed better connectivity of the fusion for MPC treatment groups compared with CP. Biomechanical analyses were not able to differentiate between treatment groups. Histomorphometry results confirmed radiographic and quantitative computed tomography results; cell-supplemented treatment groups and autograft had equivalent amounts of bone within the fusion mass and less bony fusion tissue was found within the fusion mass in specimens from the CP treatment group. No conclusive effects of cell dose of fusion efficacy were noted.

Conclusions: Adult allogeneic mesenchymal precursor cells delivered via a hydroxyapatite:tricalcium phosphate carrier were both safe and efficacious in this ovine spine fusion model. Results from this preclinical study support that allogeneic mesenchymal precursor cells produced fusion efficacy similar to that achieved using iliac crest autograft, thereby providing a safe and viable option to achieve successful posterolateral spine fusion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2013.09.048DOI Listing
March 2014

Intracoronary infusion of allogeneic mesenchymal precursor cells directly after experimental acute myocardial infarction reduces infarct size, abrogates adverse remodeling, and improves cardiac function.

Circ Res 2013 Jul 8;113(2):153-66. Epub 2013 May 8.

Molecular Cardiology Laboratory, Thoraxcenter, Erasmus University Medical Center Rotterdam, The Netherlands.

Rationale: Mesenchymal precursor cells (MPCs) are a specific Stro-3+ subpopulation of mesenchymal stem cells isolated from bone marrow. MPCs exert extensive cardioprotective effects, and are considered to be immune privileged.

Objective: This study assessed the safety, feasibility, and efficacy of intracoronary delivery of allogeneic MPCs directly after acute myocardial infarction in sheep.

Methods And Results: Initially, intracoronary delivery conditions were optimized in 20 sheep. These conditions were applied in a randomized study of 68 sheep with an anterior acute myocardial infarction. Coronary flow was monitored during MPC infusion, and cardiac function was assessed using invasive hemodynamics and echocardiography at baseline and during 8 weeks follow-up. Coronary flow remained within thrombolysis in myocardial infarction III definitions in all sheep during MPC infusion. Global left ventricular ejection fraction as measured by pressure-volume loop analysis deteriorated in controls to 40.7±2.6% after 8 weeks. In contrast, MPC treatment improved cardiac function to 52.8±0.7%. Echocardiography revealed significant improvement of both global and regional cardiac functions. Infarct size decreased by 40% in treated sheep, whereas infarct and border zone thickness were enhanced. Left ventricular adverse remodeling was abrogated by MPC therapy, resulting in a marked reduction of left ventricular volumes. Blood vessel density increased by >50% in the infarct and border areas. Compensatory cardiomyocyte hypertrophy was reduced in border and remote segments, accompanied by reduced collagen deposition and apoptosis. No microinfarctions in remote myocardial segments or histological abnormalities in unrelated organs were found.

Conclusions: Intracoronary infusion of allogeneic MPCs is safe, feasible, and markedly effective in a large animal model of acute myocardial infarction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.112.300730DOI Listing
July 2013

Catheter-based endomyocardial delivery of mesenchymal precursor cells using 3D echo guidance improves cardiac function in a chronic myocardial injury ovine model.

Cell Transplant 2013 25;22(12):2299-309. Epub 2012 Oct 25.

The Jack Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, NY, USA.

The administration of bone marrow-derived stem cells may provide a new treatment option for patients with heart failure. Transcatheter cell injection may require multi-imaging modalities to optimize delivery. This study sought to evaluate whether endomyocardial injection of mesenchymal precursor cells (MPCs) could be guided by real-time 3D echocardiography (RT3DE) in treating chronic, postinfarction (MI) left ventricular (LV) dysfunction in sheep. Four weeks after induction of an anterior wall myocardial infarction in 39 sheep, allogeneic MPCs in doses of either 25 × 10(6) (n = 10), 75 × 10(6) (n = 9), or 225 × 10(6) (n = 10) cells or nonconditioned control media (n = 10) were administered intramyocardially into infarct and border zone areas using a catheter designed for combined fluoroscopic and RT3DE-guided injections. LV function was assessed before and after injection. Infarct dimension and vascular density were evaluated histologically. RT3DE-guided injection procedures were safe. Compared to controls, the highest dose MPC treatment led to increments in ejection fraction (3 ventricula 3% in 225M MPCs vs. -5 ± 4% in the control group, p < 0.01) and wall thickening in both infarct (4 ± 4% in 225M MPCs vs. -3 ± 6% in the control group, p = 0.02) and border zones (4 ± 6% in 225M MPCs vs. -8 ± 9% in the control group, p = 0.01). Histology analysis demonstrated significantly higher arteriole density in the infarct and border zones in the highest dose MPC-treated animals compared to the lower dose or control groups. Endomyocardial implantation of MPCs under RT3DE guidance was safe and without observed logistical obstacles. Significant increases in LV performance (ejection fraction and wall thickening) and neovascularization resulted from this technique, and so this technique has important implications for treating patients with postischemic LV dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368912X658016DOI Listing
August 2014

Immunoselected STRO-3+ mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs.

J Neurosurg Spine 2012 May 9;16(5):479-88. Epub 2012 Mar 9.

Mesoblast Ltd, Melbourne, Australia.

Object: Chronic low-back pain of discal origin is linked strongly to disc degeneration. Current nonsurgical treatments are palliative and fail to restore the disc extracellular matrix. In this study the authors examined the capacity of ovine mesenchymal precursor cells (MPCs) to restore the extracellular matrix of degenerate discs in an ovine model.

Methods: Three adjacent lumbar discs of 24 adult male sheep were injected intradiscally with chondroitinase-ABC (cABC) to initiate disc degeneration. The remaining lumbar discs were used as normal controls. Three months after cABC injection, the L3-4 discs of all animals were injected with either a high dose (4 × 10(6) cells, in 12 sheep) or low dose (0.5 × 10(6) cells, in 12 sheep) of MPCs suspended in hyaluronic acid (HA). The adjacent L4-5 degenerate discs remained untreated; the L5-6 discs were injected with HA only. The animals were euthanized at 3 or 6 months after MPC injections (6 sheep from each group at each time point), and histological sections of the lumbar discs were prepared. Radiographs and MR images were obtained prior to cABC injection (baseline), 3 months after cABC injection (pretreatment), and just prior to necropsy (posttreatment).

Results: Injection of cABC decreased the disc height index (DHI) of target discs by 45%-50%, confirming degeneration. Some recovery in DHI was observed 6 months after treatment in all cABC-injected discs, but the DHI increased to within baseline control values only in the MPC-injected discs. This improvement was accompanied by a reduction in MRI degeneration scores. The histopathology scores observed at 3 months posttreatment for the high-dose MPC-injected discs and at 6 months posttreatment for the low-dose MPC-injected discs were significantly different from those of the noninjected and HA-injected discs (p <0.001) but not from the control disc scores.

Conclusions: On the basis of the findings of this study, the authors conclude that the injection of MPCs into degenerate intervertebral discs can contribute to the regeneration of a new extracellular matrix.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3171/2012.1.SPINE11852DOI Listing
May 2012

Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials.

Eur J Heart Fail 2012 Jan 6;14(1):91-105. Epub 2011 Nov 6.

Monash Centre of Cardiovascular Research & Education in Therapeutics, Department of Epidemiology & Preventive Medicine, School of Public Health & Preventive Medicine, Monash University, 99 Commercial Rd., Melbourne, VIC 3004, Australia.

Aims: Bone marrow stem cell (BMSC) treatment of ST-segment elevation myocardial infarction (STEMI) has been primarily via the intracoronary route or via endogenous mobilization using granulocyte colony-stimulating factor (G-CSF). Studies have provided conflicting results. We therefore performed a meta-analysis of these treatments, examining short- and long-term efficacy and safety.

Methods And Results: Randomized controlled trials (RCTs) of BMSC-based therapy for STEMI, delivered within 9 days of reperfusion, were identified by systematic search. Random effects models were used to calculate pooled effects of clinical outcomes, with meta-regression to assess dependence of the magnitude of effect sizes on study characteristics. Twenty-nine RCTs enrolling 1830 patients were included. Intracoronary BMSC therapy resulted in an overall improvement in left ventricular ejection fraction (LVEF) of 2.70% [95% confidence interval (CI) 1.48-3.92; P < 0.001] in the short term and 3.31% (95% CI 1.87-4.75; P < 0.001) longer term. Meta-regression suggested a dose-response relationship between quantity of CD34(+) cells delivered and increase in LVEF (P = 0.007). G-CSF treatment resulted in a trend towards similar benefits (P = 0.20). No significant differences were observed in pooled adverse outcome rates between intervention and control groups of either treatment approach, except for lower revascularization rates with intracoronary BMSC vs. control (odds ratio 0.68, 95% CI 0.47-0.97; P = 0.03).

Conclusions: Intracoronary BMSC therapy post-STEMI improves LVEF beyond standard medical treatment, in both the short and longer term. G-CSF treatment shows positive but non-significant trends. Both treatments demonstrate safety comparable with conventional medical treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurjhf/hfr148DOI Listing
January 2012

Downregulation of the CXC chemokine receptor 4/stromal cell-derived factor 1 pathway enhances myocardial neovascularization, cardiomyocyte survival, and functional recovery after myocardial infarction.

J Thorac Cardiovasc Surg 2011 Sep 8;142(3):687-96, 696.e1-2. Epub 2011 Mar 8.

Department of Cardiac Surgery, Innsbruck Medical University, Innsbruck, Austria.

Objectives: Although adequate numbers of hematopoietic progenitor cells reside in the human bone marrow, the extent of endogenous neovascularization after myocardial infarction remains insufficient. The aim of this study was to identify the role of the CXC chemokine receptor 4/stromal cell-derived factor 1 axis in the mobilization and homing of hematopoietic progenitor cells in the ischemic heart.

Methods: Human bone marrow-derived hematopoietic progenitor cells or saline were injected systemically into athymic nude rats 48 hours after myocardial infarction. Myocardial and bone marrow expression of stromal cell-derived factor 1 and chemotaxis of hematopoietic progenitor cells were measured in vitro in the presence or absence of stromal cell-derived factor 1. The role of the CXC chemokine receptor 4/stromal cell-derived factor 1 axis was investigated by means of antibody blockade or systemic administration of granulocyte colony-stimulating factor. Morphologic analysis included measurement of the infarct area, capillary density, and apoptosis, whereas left ventricular function was measured by means of echocardiographic analysis.

Results: Expression of postinfarct stromal cell-derived factor 1 was increased by 67% in the bone marrow and decreased by 43% in myocardium. Disruption of bone marrow stromal cell-derived factor 1/CXC chemokine receptor 4 interactions by antibody blockade resulted in a redirection of human hematopoietic progenitor cells from the bone marrow to the ischemic heart and augmented neovascularization and cardiomyocyte survival. Similarly, systemic administration of granulocyte colony-stimulating factor to block CXC chemokine receptor 4/stromal cell-derived factor 1 interaction resulted in increased mobilization and homing of hematopoietic progenitor cells to the ischemic heart, which translated to augmented myocardial neovascularization, prevention of apoptosis, and improved cardiac function.

Conclusions: Bone marrow stromal cell-derived factor 1 upregulation after myocardial ischemia prevents mobilization of endogenous hematopoietic progenitor cells. We provide evidence that disruption of stromal cell-derived factor 1/CXC chemokine receptor 4 interactions allows redirection of hematopoietic progenitor cells to ischemic myocardium and enhances recovery of left ventricular function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2011.01.014DOI Listing
September 2011

A comparison of mesenchymal precursor cells and amnion epithelial cells for enhancing cervical interbody fusion in an ovine model.

Neurosurgery 2011 Apr;68(4):1025-34; discussion 1034-5

Monash Immunology and Stem Cell Laboratories, Melbourne, Victoria, Australia.

Background: Rapid, reliable fusion is the goal in anterior cervical diskectomy and fusion. Iliac crest autograft has a high rate of donor-site morbidity. Alternatives such as bone graft substitutes lack osteoinductivity, and recombinant bone morphogenetic proteins risk life-threatening complications. Both allogeneic mesenchymal precursor cells (MPCs) and amnion derived epithelial cells (AECs) have osteogenic potential.

Objective: To compare for the first time the capacity of MPCs and AECs to promote osteogenesis in an ovine model.

Methods: Five groups of 2-year-old ewes were subjected to C3-4 anterior cervical diskectomy and fusion with a Fidji interbody cage packed with iliac crest autograft alone (group A; n = 6), hydroxyapatite-tricalcium phosphate Mastergraft granules (HA/TCP) alone (group B; n = 6), HA/TCP containing 5 million MPCs (group C; n = 6), or HA/TCP containing 5 million AECs (group D; n = 5); group E was made up of age-matched nonoperative controls (n = 6). At 3 months, animals were euthanized and quantitative multislice computed tomography, functional radiography, biomechanics, histology, and histomorphometry were performed.

Results: No procedure- or cell-related adverse events were observed. There was significantly more fusion in the MPC group (C) than in group A, B, or D. Computed tomography scan at 3 months revealed that 5 of 6 MPC-treated animals (83%) had continuous bony bridging compared with 0 of 5 AEC-treated and only 1 of 6 autograft- and 2 of 6 HA/TCP-treated animals (P = .01).

Conclusion: Implantation of allogeneic MPCs in combination with HA/TCP within an interbody spacer facilitates interbody fusion after diskectomy. The earlier, more robust fusion observed with MPCs relative to autograft and HA/TCP bone substitute indicates that this approach may offer a therapeutic benefit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1227/NEU.0b013e31820d5375DOI Listing
April 2011

Cervical interbody fusion is enhanced by allogeneic mesenchymal precursor cells in an ovine model.

Spine (Phila Pa 1976) 2011 Apr;36(8):615-23

Monash Immunology and Stem Cell Laboratories, Department of Surgery, Monash University, Victoria, Australia.

Study Design: An experimental study using a sheep cervical spine interbody fusion model.

Objective: To compare allogeneic mesenchymal precursor cells combined with hydroxyapatite and tricalcium phosphate (HA/TCP) with HA/TCP alone or iliac crest autograft (AG) for cervical interbody fusion.

Summary Of Background Data: We investigated the effect of mesenchymal precursor cells on cervical fusion because of the shortcomings of using iliac crest (donor site morbidity), bone substitute (poor osteoinductive properties), and bone morphogenic proteins (serious complications).

Methods: Thirty ewes were divided randomly into four groups of six having C3-C4 anterior cervical discectomy and fusion using a Fidji cage packed with, AG, HA/TCP, HA/TCP containing 5 million MPCs, and HA/TCP containing 10 million MPCs. MPCs were derived from a single batch of immuno-selected and culture-expanded MPCs isolated from bone marrow of out-bred sheep. The fifth group were nonoperated controls. Safety, fusion parameters, and biomechanics were assessed.

Results: No cell-related adverse events were observed. No significant differences were found between the five or 10 million MPC groups. Evaluation of fusion by CT scan at 3 months showed that 9 of 12 (75%) MPC-treated animals had continuous bony bridging compared with only 1 of 6 AG and 2 of 6 HA/TCP (P = 0.019 and P = 0.044, respectively). By quantitative CT, density of new bone in MPC-treated animals was 121% higher than in HA/TCP (P = 0.017) and 128% higher than in AG (P < 0.0001). Functional radiology at 3 months revealed that MPC-treated animals had significantly reduced macromotion at C3/4 compared with AG and HA/TCP groups combined (P = 0.007).

Conclusion: Implantation of allogeneic MPCs when combined with HA/TCP and an interbody spacer facilitates new bone formation after discectomy without any cell-related complications. The earlier and dense new bone formation observed with MPCs relative to autograft and HA/TCP alone suggest that this approach may offer therapeutic benefit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/BRS.0b013e3181dfcec9DOI Listing
April 2011

Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia.

J Cell Mol Med 2011 Oct;15(10):2117-29

The University of Melbourne, St Vincent's Hospital, Department of Medicine, Melbourne, Victoria, Australia.

Stromal precursor antigen (STRO)-3 has previously been shown to identify a subset of adult human bone marrow (BM)-derived mesenchymal lineage precursors, which may have cardioprotective potential. We sought to characterize STRO-3-immunoselected and culture-expanded mesenchymal precursor cells (MPCs) with respect to their biology and therapeutic potential in myocardial ischemia. Immunoselection of STRO-3(+) MPCs enriched for fibroblastic colony forming units from unfractionated BM mononuclear cells (MNCs). Compared to mesenchymal stem cells conventionally isolated by plastic adherence, MPCs demonstrated increased proliferative capacity during culture expansion, expressed higher levels of early 'stem cell' markers and various pro-angiogenic and cardioprotective cytokines, and exhibited greater trilineage developmental efficiency. Intramyocardial injection of MPCs into a rat model of myocardial infarction (MI) promoted left ventricular recovery and inhibited left ventricular dilatation. These beneficial effects were associated with cardioprotective and pro-angiogenic effects at the tissue level, despite poor engraftment of cells. Treatment of MI rats with MPC-conditioned medium (CM) preserved left ventricular function and dimensions, reduced myocyte apoptosis and fibrosis, and augmented neovascularization, involving both resident vascular cells and circulating endothelial progenitor cells (EPCs). Profiling of CM revealed various cardioprotective and pro-angiogenic factors, which had biological activity in cultures of myocytes, tissue-resident vascular cells and EPCs. Prospective immunoselection of STRO-3(+) MPCs from BM MNCs conferred advantage in maintaining a population of immature MPCs during ex vivo expansion. Transplantation of culture-expanded MPCs into the post-MI heart resulted in therapeutic benefit, attributable at least in part to paracrine mechanisms of action. Thus, MPCs represent a promising therapy for myocardial ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1582-4934.2010.01241.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092801PMC
October 2011

Reparative effects of allogeneic mesenchymal precursor cells delivered transendocardially in experimental nonischemic cardiomyopathy.

JACC Cardiovasc Interv 2010 Sep;3(9):974-83

Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, Australia.

Objectives: This study set out to evaluate the safety and efficacy of allogeneic bone marrow mesenchymal precursor cells (MPC) delivered by multisegmental, transendocardial implantation in the setting of nonischemic cardiomyopathy (NICM).

Background: Prospectively isolated MPC have shown capacity to mediate cardiovascular repair in myocardial ischemia. However, their efficacy in NICM remains undetermined.

Methods: Mesenchymal precursor cells were prepared from ovine bone marrow by immunoselection using the tissue nonspecific alkaline phosphatase, or STRO-3, monoclonal antibody. Fifteen sheep with anthracycline-induced NICM were assigned to catheter-based, transendocardial injections of allogeneic MPC (n = 7) or placebo (n = 8), under electromechanical mapping guidance. Follow-up was for 8 weeks, with end points assessed by cardiac magnetic resonance, echocardiography, and histology.

Results: Intramyocardial injections were distributed similarly throughout the left ventricle in both groups. Cell transplantation was associated with 1 death late in follow-up, compared with 3 early deaths among placebo animals. Left ventricular end-diastolic size increased in both cohorts, but MPC therapy attenuated end-systolic dilation and stabilized ejection fraction, with a nonsignificant increase (37.3 ± 2.8% before, 39.2 ± 1.4% after) compared with progressive deterioration after placebo (38.8 ± 4.4% before, 32.5 ± 4.9% after, p < 0.05). Histological outcomes of cell therapy included less fibrosis burden than in the placebo group and an increased density of karyokinetic cardiomyocytes and myocardial arterioles (p < 0.05 for each). These changes occurred in the presence of modest cellular engraftment after transplantation.

Conclusions: Multisegmental, transendocardial delivery of cell therapy can be achieved effectively in NICM using electromechanical navigation. The pleiotropic properties of immunoselected MPC confer benefit to nonischemic cardiac disease, extending their therapeutic potential beyond the setting of myocardial ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcin.2010.05.016DOI Listing
September 2010

Comparative assessment of the osteoconductive properties of different biomaterials in vivo seeded with human or ovine mesenchymal stem/stromal cells.

Tissue Eng Part A 2010 Dec 30;16(12):3579-87. Epub 2010 Aug 30.

Myeloma Research Laboratory, Department of Haematology, Institute of Medical and Veterinary Science, Adelaide, South Australia.

Mesenchymal stromal/stem cells (MSC), when used in combination with biomaterial scaffolds, have been shown to contribute at varying efficiencies to bone and cartilage regeneration in preclinical large animal models and human clinical trials. In an orthopedic context, identification of the optimal scaffold, which is capable of inducing tissue regeneration, has been the subject of numerous studies. In the present study, we show that ex vivo-expanded MSC from human and ovine bone marrow display similar phenotypic properties, but exhibit differences in their ability to form bone in vivo when transplanted with different biocompatible scaffold composites. We found that the ovine MSC formed ectopic bone on all scaffolds tested with the exception of collagen-based demineralized bone matrix. In contrast, human MSC in general formed less bone and only on those biomaterials composed of ceramic particles containing at least 15% hydroxyapatite. This study demonstrates the differences in bone formation potential between human and ovine MSC in vivo based on the osteoconductive properties of different bioscaffolds currently being used for orthopedic clinical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2010.0153DOI Listing
December 2010

Cervical motion preservation using mesenchymal progenitor cells and pentosan polysulfate, a novel chondrogenic agent: preliminary study in an ovine model.

Neurosurg Focus 2010 Jun;28(6):E4

Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.

Object: There is an unmet need for a procedure that could generate a biological disc substitute while at the same time preserving the normal surgical practice of achieving anterior cervical decompression. The objective of the present study was to test the hypothesis that adult allogeneic mesenchymal progenitor cells (MPCs) formulated with a chondrogenic agent could synthesize a cartilaginous matrix when implanted into a biodegradable carrier and cage, and over time, might serve as a dynamic interbody spacer following anterior cervical discectomy (ACD).

Methods: Eighteen ewes were divided randomly into 3 groups of 6 animals. Each animal was subjected to C3-4 and C4-5 ACD followed by implantation of bioresorbable interbody cages and graft containment plates. The cage was packed with 1 of 3 implants. In Group A, the implant was Gelfoam sponge only. In Group B, the implant consisted of Gelfoam sponge with 1 million MPCs only. In Group C, the implant was Gelfoam sponge with 1 million MPCs formulated with the chondrogenic agent pentosan polysulfate (PPS). In each animal the cartilaginous endplates were retained intact at 1 level, and perforated in a standardized manner at the other level. Allogeneic ovine MPCs were derived from a single batch of immunoselected and culture-expanded MPCs isolated from bone marrow of outbred sheep (mixed stock). Radiological and histological measures were used to assess cartilage formation and the presence or absence of new bone formation.

Results: The MPCs with or without PPS were safe and well-tolerated in the ovine cervical spine. There was no significant difference between groups in the radiographic or histological outcome measures, regardless of whether endplates were perforated or retained intact. According to CT scans obtained at 3 months after the operation, new bone formation within the interbody space was observed in the Gelfoam only group (Group A) in 9 (75%) of 12 interbody spaces, and 11 (92%) of 12 animals in the MPC cohort (Group B) had new bone formation within the interbody space. Significantly, in the MPC & PPS group (Group C), there were only 1 (8%) of 12 levels with new bone formation (p = 0.0009 vs Group A; p = 0.0001 vs Group B). According to histological results, there was significantly more cartilaginous tissue within the interbody cages of Group C (MPC & PPS) compared with both the control group (Group A; p = 0.003) and the MPC Group (p = 0.017).

Conclusions: This study demonstrated the feasibility of using MPCs in combination with PPS to produce cartilaginous tissue to replace the intervertebral disc following ACD. This biological approach may offer a means preserving spinal motion and offers an alternative to fusion to artificial prostheses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3171/2010.3.FOCUS1050DOI Listing
June 2010

Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: a report of the International Society for Cardiovascular Translational Research.

JACC Cardiovasc Interv 2010 Mar;3(3):265-75

Mercy Gilbert Medical Center, Chandler Regional Medical Center, 3420 South Mercy Road, Gilbert, AZ 85297, USA.

The field of myocardial regeneration (angiogenesis and myogenesis) might prove to play an important role in the future management of cardiovascular disease. Stem cells are currently undergoing testing in Phase I and Phase II clinical trials. Methods of delivery will affect the outcome of such therapies, perhaps significantly. This document provides suggested guidance in 4 methods of delivery: endocardial, intracoronary, coronary sinus, and epicardial.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcin.2009.12.013DOI Listing
March 2010

Pentosan polysulfate promotes proliferation and chondrogenic differentiation of adult human bone marrow-derived mesenchymal precursor cells.

Arthritis Res Ther 2010 18;12(1):R28. Epub 2010 Feb 18.

Proteobioactives Pty Ltd, 27/9 Powells Road, Brookvale, New South Wales 2100, Australia.

Introduction: This study was undertaken to determine whether the anti-osteoarthritis drug pentosan polysulfate (PPS) influenced mesenchymal precursor cell (MPC) proliferation and differentiation.

Methods: Human MPCs were maintained in monolayer, pellet or micromass cultures (MMC) for up to 10 days with PPS at concentrations of 0 to 20 microg/ml. MPC viability and proliferation was assessed using the WST-1 assay and 3H-thymidine incorporation into DNA, while apoptosis was monitored by flow cytometry. Proteoglycan (PG) biosynthesis was determined by 35SO42- incorporation and staining with Alcian blue. Proteoglycan and collagen type I and collagen type II deposition in pellet cultures was also examined by Toluidine blue and immunohistochemical staining, respectively. The production of hyaluronan (HA) by MPCs in MMC was assessed by ELISA. The relative outcome of PPS, HA, heparin or dextran sulfate (DS) on PG synthesis was compared in 5-day MMC. Gene expression of MPCs in 7-day and 10-day MMC was examined using real-time PCR. MPC differentiation was investigated by co-culturing with PPS in osteogenic or adipogenic inductive culture media for 28 days.

Results: Significant MPC proliferation was evident by day 3 at PPS concentrations of 1 to 5 microg/ml (P < 0.01). In the presence of 1 to 10 microg/ml PPS, a 38% reduction in IL-4/IFNgamma-induced MPC apoptosis was observed. In 5-day MMC, 130% stimulation of PG synthesis occurred at 2.5 microg/ml PPS (P < 0.0001), while 5.0 microg/ml PPS achieved maximal stimulation in the 7-day and 10-day cultures (P < 0.05). HA and DS at > or = 5 microg/ml inhibited PG synthesis (P < 0.05) in 5-day MMC. Collagen type II deposition by MMC was significant at > or = 0.5 microg/ml PPS (P < 0.001 to 0.05). In MPC-PPS pellet cultures, more PG, collagen type II but less collagen type I was deposited than in controls. Real-time PCR results were consistent with the protein data. At 5 and 10 microg/ml PPS, MPC osteogenic differentiation was suppressed (P < 0.01).

Conclusions: This is the first study to demonstrate that PPS promotes MPC proliferation and chondrogenesis, offering new strategies for cartilage regeneration and repair in osteoarthritic joints.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/ar2935DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875662PMC
August 2010

Islet grafting and imaging in a bioengineered intramuscular space.

Transplantation 2009 Nov;88(9):1065-74

Department of Surgery, Columbia University Medical College, New York, NY, USA.

Background: Because the hepatic portal system may not be the optimal site for islet transplantation, several extrahepatic sites have been studied. Here, we examine an intramuscular transplantation site, bioengineered to better support islet neovascularization, engraftment, and survival, and we demonstrate that at this novel site, grafted beta cell mass may be quantitated in a real-time noninvasive manner by positron emission tomography (PET) imaging.

Methods: Streptozotocin-induced rats were pretreated intramuscularly with a biocompatible angiogenic scaffold received syngeneic islet transplants 2 weeks later. The recipients were monitored serially by blood glucose and glucose tolerance measurements and by PET imaging of the transplant site with [11C] dihydrotetrabenazine. Parallel histopathologic evaluation of the grafts was performed using insulin staining and evaluation of microvasularity.

Results: Reversal of hyperglycemia by islet transplantation was most successful in recipients pretreated with bioscaffolds containing angiogenic factors when compared with those who received no bioscaffolds or bioscaffolds not treated with angiogenic factors. PET imaging with [11C] dihydrotetrabenazine, insulin staining, and microvascular density patterns were consistent with islet survival, increased levels of angiogenesis, and with reversal of hyperglycemia.

Conclusions: Induction of increased neovascularization at an intramuscular site significantly improves islet transplant engraftment and survival compared with controls. The use of a nonhepatic transplant site may avoid intrahepatic complications and permit the use of PET imaging to measure and follow transplanted beta cell mass in real time. These findings have important implications for effective islet implantation outside of the liver and offer promising possibilities for improving islet survival, monitoring, and even prevention of islet loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0b013e3181ba2e87DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076663PMC
November 2009

Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction.

Circulation 2009 Sep;120(11 Suppl):S220-9

Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, USA.

Background: Targeted delivery of mesenchymal precursor cells (MPCs) can modify left ventricular (LV) cellular and extracellular remodeling after myocardial infarction (MI). However, whether and to what degree LV remodeling may be affected by MPC injection post-MI, and whether these effects are concentration-dependent, remain unknown.

Methods And Results: Allogeneic MPCs were expanded from sheep bone marrow, and direct intramyocardial injection was performed within the borderzone region 1 hour after MI induction (coronary ligation) in sheep at the following concentrations: 25x10(6) (25 M, n=7), 75x10(6) (75 M, n=7), 225x10(6) (225 M, n=10), 450x10(6) (450 M, n=8), and MPC free media only (MI Only, n=14). LV end diastolic volume increased in all groups but was attenuated in the 25 and 75 M groups. Collagen content within the borderzone region was increased in the MI Only, 225, and 450 M groups, whereas plasma ICTP, an index of collagen degradation, was highest in the 25 M group. Within the borderzone region matrix metalloproteinases (MMPs) and MMP tissue inhibitors (TIMPs) also changed in a MPC concentration-dependent manner. For example, borderzone levels of MMP-9 were highest in the 25 M group when compared to the MI Only and other MPC treatment group values.

Conclusions: MPC injection altered collagen dynamics, MMP, and TIMP levels in a concentration-dependent manner, and thereby influenced indices of post-MI LV remodeling. However, the greatest effects with respect to post-MI remodeling were identified at lower MPC concentrations, thus suggesting a therapeutic threshold exists for this particular cell therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.842302DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752314PMC
September 2009

Alloantibodies in heart transplantation.

Hum Immunol 2009 Oct 23;70(10):825-9. Epub 2009 Jun 23.

Department of Pathology, Columbia University, New York, New York, USA.

The presence of complement fixing anti-human leukocyte antigen (HLA) antibodies in the circulation of organ transplant recipients may result in heart allograft rejection. Here, we assessed the clinical impact of pre- and post-transplantation allosensitization on long-term survival of heart allografts. Sequential samples of sera from heart allograft recipients were screened pretransplantation for panel reactive antibodies using the complement-dependent cytotoxicity test. Patients were monitored post-transplantation for donor specific anti-HLA class I and class II antibodies. Kaplan-Meier graft survival plots were generated to analyze the effect of anti-HLA antibodies on transplantation outcomes. Statistical analysis showed that the post-transplantation development of alloantibodies was a significant risk factor that was associated with low long-term survival rates; in contrast, recipients' gender, age, previous transplantations, and degree of HLA matching with the donor had no effect on long-term survival. The presence in pretransplantation sera of antibodies against more than 10% of the HLA reference panel (PRA >10%) was associated with AMR and with a relatively lower rate of graft survival after 1 year but did not affect 10-year survival. The present data underline the importance of monitoring the development of anti-HLA antibodies as a tool for early diagnosis and treatment of AMR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humimm.2009.06.015DOI Listing
October 2009

Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues.

Stem Cells Dev 2009 Nov;18(9):1253-62

Mesenchymal Stem Cell Group, University of Adelaide, Adelaide SA 5000, Australia.

Mesenchymal stromal cells (MSCs) and their precursor cells (MPCs) can proliferate and differentiate into multiple mesodermal and some ectodermal and endodermal tissues. Culture-expanded MSCs are currently being evaluated as a possible cell therapy to replace/repair injured or diseased tissues. While a number of mAb reagents with specificity to human MSCs, including STRO-1, STRO-3 (BLK ALP), CD71 (SH2, SH3), CD106 (VCAM-1), CD166, and CD271, have facilitated the isolation of purified populations of human MSCs from primary tissues, few if any mAb reagents have been described that can be used to isolate equivalent cells from other species. This is of particular relevance when assessing the tissue regenerative efficacy of MSCs in large immunocompetent, preclinical animal models of disease. In light of this, we sought to generate novel monoclonal antibodies (mAb) with specific reactivity against a cell surface molecule that is expressed at high levels by MSCs from different species. Using CD106 (VCAM-1)-selected ovine MSCs as an immunogen, mAb-producing hybridomas were selected for their reactivity to both human and ovine MSCs. One such hybridoma, termed STRO-4, produced an IgG mAb that reacted with <5% of human and ovine bone marrow (BM) mononuclear cells. As a single selection reagent, STRO-4 mAb was able to enrich colony-forming fibroblasts (CFU-F) in both human and ovine BM by 16- and 8-folds, respectively. Cells isolated with STRO-4 exhibited reactivity with markers commonly associated with MSCs isolated by plastic adherence including CD29, CD44, and CD166. Moreover, when placed in inductive culture conditions in vitro, STRO-4(+) MSCs exhibited multilineage differentiation potential and were capable of forming a mineralized matrix, lipid-filled adipocytes, and chondrocytes capable of forming a glycosaminoglycan-rich matrix. Biochemical analysis revealed that STRO-4 identified the beta isoform of heat shock protein-90 (Hsp90beta). In addition to identifying an antibody reagent that identifies a highly conserved epitope expressed by MSCs from different species, our study also points to a potential role for Hsp90beta in MSC biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2008.0400DOI Listing
November 2009

Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage.

Ann Thorac Surg 2009 Mar;87(3):794-801

Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.

Background: This experiment assessed the dose-dependent effect of a unique allogeneic STRO-3-positive mesenchymal precursor cell (MPC) on postinfarction left ventricular (LV) remodeling. The MPCs were administered in a manner that would simulate an off-the-self, early postinfarction, preventative approach to cardiac cell therapy in a sheep transmural myocardial infarct (MI) model.

Methods: Allogeneic MPCs were isolated from male crossbred sheep. Forty-six female sheep underwent coronary ligation to produce a transmural LV anteroapical infarction. One hour after infarction, the borderzone myocardium received an injection of 25, 75, 225, or 450 x 10(6) MPCs, or cell medium. Echocardiography was performed at 4 and 8 weeks after MI to quantify LV end-diastolic (LVEDV) and end-systolic volumes (LVESV), ejection fraction (EF), and infarct expansion. CD31 and smooth muscle actin (SMA) immunohistochemical staining was performed on infarct and borderzone specimens to quantify vascular density.

Results: Compared with controls, low-dose (25 and 75 x 10(6) cells) MPC treatment significantly attenuated infarct expansion and increases in LVEDV and LVESV. EF was improved at all cell doses. CD31 and SMA immunohistochemical staining demonstrated increased vascular density in the borderzone only at the lower cell doses. There was no evidence of myocardial regeneration within the infarct.

Conclusion: Allogeneic STRO-3 positive MPCs attenuate the remodeling response to transmural MI in a clinically relevant large-animal model. This effect is associated with vasculogenesis and arteriogenesis within the borderzone and infarct and is most pronounced at lower cell doses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.athoracsur.2008.11.057DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021253PMC
March 2009

Safety and efficacy of consecutive cycles of granulocyte-colony stimulating factor, and an intracoronary CD133+ cell infusion in patients with chronic refractory ischemic heart disease: the G-CSF in angina patients with IHD to stimulate neovascularization (GAIN I) trial.

Am Heart J 2008 Nov;156(5):954-63

Victor Chang Cardiac Research Institute, St Vincent's Hospital, University of New South Wales, Sydney, New South Wales, Australia.

Background: Preclinical studies suggest granulocyte-colony stimulating factor (G-CSF) holds promise for treating ischemic heart disease; however; its clinical safety and efficacy in this setting remain unclear. We elected to evaluate the safety and efficacy of G-CSF administration in patients with refractory "no-option" ischemic heart disease.

Methods: Twenty patients (18 males, 2 females, mean age 62.4 years) were enrolled and underwent baseline cardiac ischemia assessment (CA) (angina questionnaire, exercise stress test [EST], technetium Tc 99m sestamibi and dobutamine-stress echocardiographic imaging). Patients then received open-label G-CSF commencing at 10 microg/kg SC for 5 days, with an EST on days 4 and 6 (to facilitate myocardial cytokine generation and stem cell trafficking). After 3 months, CA and the same regimen of G-CSF+ESTs were repeated but, in addition, leukapheresis and a randomized double-blinded intracoronary infusion of CD133+ or unselected cells were performed. Final CA occurred 3 months thereafter.

Results: There were no deaths, but only 16 patients were permitted to complete the study. Eight events fulfilled prespecified "adverse event" criteria, including 4 troponin I-positive events and 2 episodes of thrombocytopenia. Also, frequent minor troponin I-positive events (troponin I<0.9 microg/L) were observed, which did not meet adverse event criteria. The administration of consecutive cycles of G-CSF resulted in stepwise improvements in anginal frequency, EST performance, and Duke treadmill scores (all P<.005). However, from baseline to final follow-up, technetium Tc 99m sestamibi and dobutamine-stress echocardiographic results were unchanged.

Conclusions: Granulocyte-colony stimulating factor administration was associated with improvement in a range of subjective outcomes. However, adverse events were common, and objective measures of cardiac perfusion/ischemia were unchanged.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ahj.2008.04.034DOI Listing
November 2008

A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells.

Stem Cells Dev 2007 Dec;16(6):953-63

Mesenchymal Research Laboratory, Division of Haematology, Institute of Medical and Veterinary Science, Hanson Institute and University of Adelaide, Australia 5000.

Numerous studies support the concept that the nonhemopoietic cells of the bone marrow (BM), are derived from a population of multipotent bone marrow stromal stem cells (BMSSCs), which reside in perivascular niches within the bone marrow. These BMSSCs are thought to give rise not only to more cells that are phenotypically and functionally identical but also differentiated, lineage-committed mesenchymal progeny, including chondrocytes, smooth muscle cells, adipocytes, and osteoblasts. Recently, we have generated a novel monoclonal antibody (mAb) (designated STRO-3) that reacts with a minor subset of STRO-1(+) cells contained within adult BM aspirates and does not react with CD34(+) hemopoietic stem cells. Our results also show that STRO-3 identifies a high proportion of BMSSCs that possess extensive proliferative and multilineage differentiative capacity. Using retroviral expression cloning, we determined that STRO-3 binds to tissue nonspecific alkaline phosphatase (TNSALP), a cell-surface glycoprotein usually associated with cells of the osteoblast lineage. Studies presented here suggest that in addition to being expressed by osteoblasts, TNSALP may also represent a marker of immature BMSSCs in vivo. Finally, these studies suggest that antibodies to TNSALP may be used as an effective single marker of enrichment of BMSSCs from various tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2007.0069DOI Listing
December 2007

A DNA enzyme against plasminogen activator inhibitor- type 1 (PAI-1) limits neointima formation after angioplasty in an obese diabetic rodent model.

J Cardiovasc Pharmacol 2007 Dec;50(6):633-40

Department of Surgery, Columbia University, College of Surgeons and Physicians, New York, New York, USA.

We investigated whether targeted cleavage of PAI-1 mRNA might prevent post-angioplasty neointima formation in diabetic JCR:LA-cp/cp rats with naturally elevated PAI-1 levels. Catalytic DNA enzymes targeting rat PAI-1 mRNA (PAI-1 DNA enzyme, n = 12) or a random sequence as control (scrambled DNA enzyme, n = 12) were infused at the site of arterial damage. Control animals demonstrated prominent PAI-1 protein expression in the arterial endothelium at 48 hours, and robust neointimal proliferation by two weeks, with 60 +/- 10% mean occlusion of the artery lumen. The neointimal lesion consisted of dense fibrin deposition and numerous proliferating smooth muscle cells, as determined by dual alpha-smooth muscle actin/Ki67 expression. Treatment with PAI-1 DNA enzyme resulted in marked early (48 hour) reduction of endothelial PAI-1 protein expression, which persisted for the next two weeks as well as a two fold reduction of expression of PAI-1 mRNA by RT-PCR at the same time point, (P < 0.05). By two weeks, PAI-1 DNA enzyme treated animals demonstrated significantly reduced levels of fibrin deposition and 5-fold lower levels of proliferating smooth muscle cells at the site of arterial injury compared to controls (P < 0.01), and a 2-fold lower neointima/media ratio (0.67 +/- 0.11 vs 1.39 +/- 0.12) (P < 0.05). Treatment with a catalytic PAI-1 DNA enzyme successfully prevents neointimal proliferation after balloon injury in diabetic animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0b013e318150d6b3DOI Listing
December 2007
-->