Publications by authors named "Silla Notten"

2 Publications

  • Page 1 of 1

Immune reactivity of candidate reference materials.

Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M 2006 (95):84-8; discussion 88-90, 100-4

Servicio de Allergía, Hospital Clinio San Carlos, Madrid.

Immune reactivity is a key issue in the evaluation of the quality of recombinant allergens as potential reference materials. Within the frame of the CREATE project, the immune reactivity of the natural and recombinant versions of the major allergens of birch pollen (Bet v 1), grass pollen (Phl p 1 and 5), olive pollen (Ole e 1), and house dust mite (Der p 1 and 2, and Der f 1 and 2) was analysed. The IgE binding capacity of the allergens was studied by direct RAST and RAST inhibition, and their biological activity by basophil histamine release, using sera of allergic patients selected across Europe. For birch pollen, rBet v 1 is an excellent mimic of the natural allergen. For grass pollen, rPhl p 1 showed a significant lower IgE reactivity and was not considered a suitable candidate, whereas rPhl p 5a exhibited an immune reactivity closer to that of its natural counterpart. For olive, rOle e 1 had a lower IgE binding capacity in RAST but a higher biological activity in histamine release. For house dust mite, recombinant group 1 allergens were significantly less potent than their natural counterparts, but recombinant group 2 allergens were close mimics of their natural homologues.
View Article and Find Full Text PDF

Download full-text PDF

April 2007

4-Hydroxy-oxyphenbutazone is a potent inhibitor of cytokine production.

Eur Cytokine Netw 2005 Jun;16(2):144-51

Department of Immunopathology, Sanquin Research at CLB, PO.BOX 9190, 1006 AD Amsterdam, The Netherlands.

4-Hydroxy-oxyphenbutazone (4OH-OPB), is currently in phase II trials for its immunosuppressive effect in patients with rheumatoid arthritis. 4OH-OPB and other compounds related to phenylbutazone were tested for their effect on in vitro cytokine production by monocytes and lymphocytes present in peripheral mononuclear cells (PBMC) or whole blood (WB) cultures, and compared against phenylbutazone and oxyphenbutazone, two known anti-inflammatory drugs. In PBMC cultures, 4OH-OPB was by far the most potent inhibitor, and both monokines and Th1 and Th2 lymphokines were efficiently inhibited at low concentrations. In WB cultures, 4OH-OPB was less effective than in PBMC cultures, but was still the best inhibitor of lymphokine production and, furthermore, was the only inhibitor of monokine production. The increase in 4OH-OPB concentration needed to induce the same inhibition of cytokine production in WB as in PBMC culture could be mimicked by the addition of erythrocytes to the PBMC cultures. Experiments with radioactively-labeled 4OH-OPB suggest that 4OH-OPB is taken up very rapidly into erythrocytes and is secreted by the erythrocytes with much slower kinetics via a multidrug-resistance-associated protein. The secreted compound is most likely structurally different from 4OH-OPB, as in PBMC and WB cultures, the inhibition of cytokine production seems to be caused by a different mechanism. In PBMC cultures, the inhibition of cytokine production is accompanied by a loss of cell viability, while this is not the case when 4OH-OPB inhibits cytokine production in WB. Our data suggest that 4OH-OPB may be useful as an immunosuppressive drug for patients with inflammatory diseases.
View Article and Find Full Text PDF

Download full-text PDF

June 2005