Publications by authors named "Shukti Chakravarti"

61 Publications

Transcriptomic and Immunohistochemical Analysis of Progressive Keratoconus Reveal Altered WNT10A in Epithelium and Bowman's Layer.

Invest Ophthalmol Vis Sci 2021 May;62(6):16

The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.

Purpose: To identify global gene expression changes in the corneal epithelium of keratoconus (KC) patients compared to non-KC myopic controls.

Methods: RNA-sequencing was performed on corneal epithelium samples of five progressive KC and five myopic control patients. Selected results were validated using TaqMan quantitative PCR (qPCR) on 31 additional independent samples, and protein level validation was conducted using western blot analysis on a subset. Immunohistochemistry was performed on tissue microarrays containing cores from over 100 KC and control cases. WNT10A transcript levels in corneal epithelium were correlated with tomographic indicators of KC disease severity in 15 eyes. Additionally, WNT10A was overexpressed in vitro in immortalized corneal epithelial cells.

Results: WNT10A was found to be underexpressed in KC epithelium at the transcript (ratio KC/control = 0.59, P = 0.02 per RNA-sequencing study; ratio = 0.66, P = 0.03 per qPCR) and protein (ratio = 0.07, P = 0.06) levels. Immunohistochemical analysis also indicated WNT10A protein was decreased in Bowman's layer of KC patients. In contrast, WNT10A transcript level positively correlated with increased keratometry (Kmax ρ = 0.57, P = 0.02). Finally, WNT10A positively regulated COL1A1 expression in corneal epithelial cells.

Conclusions: A specific Wnt ligand, WNT10A, is reduced at the mRNA and protein level in KC epithelium and Bowman's layer. This ligand positively regulates collagen type I expression in corneal epithelial cells. The results suggest that WNT10A expression in the corneal epithelium may play a role in progressive KC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.62.6.16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132000PMC
May 2021

Pathogenic alleles in microtubule, secretory granule and extracellular matrix-related genes in familial keratoconus.

Hum Mol Genet 2021 May;30(8):658-671

Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY 10016, USA.

Keratoconus is a common corneal defect with a complex genetic basis. By whole exome sequencing of affected members from 11 multiplex families of European ancestry, we identified 23 rare, heterozygous, potentially pathogenic variants in 8 genes. These include nonsynonymous single amino acid substitutions in HSPG2, EML6 and CENPF in two families each, and in NBEAL2, LRP1B, PIK3CG and MRGPRD in three families each; ITGAX had nonsynonymous single amino acid substitutions in two families and an indel with a base substitution producing a nonsense allele in the third family. Only HSPG2, EML6 and CENPF have been associated with ocular phenotypes previously. With the exception of MRGPRD and ITGAX, we detected the transcript and encoded protein of the remaining genes in the cornea and corneal cell cultures. Cultured stromal cells showed cytoplasmic punctate staining of NBEAL2, staining of the fibrillar cytoskeletal network by EML6, while CENPF localized to the basal body of primary cilia. We inhibited the expression of HSPG2, EML6, NBEAL2 and CENPF in stromal cell cultures and assayed for the expression of COL1A1 as a readout of corneal matrix production. An upregulation in COL1A1 after siRNA inhibition indicated their functional link to stromal cell biology. For ITGAX, encoding a leukocyte integrin, we assayed its level in the sera of 3 affected families compared with 10 unrelated controls to detect an increase in all affecteds. Our study identified genes that regulate the cytoskeleton, protein trafficking and secretion, barrier tissue function and response to injury and inflammation, as being relevant to keratoconus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab075DOI Listing
May 2021

RNA sequencing of corneas from two keratoconus patient groups identifies potential biomarkers and decreased NRF2-antioxidant responses.

Sci Rep 2020 06 18;10(1):9907. Epub 2020 Jun 18.

Department of Ophthalmology, NYU Langone Medical Center, New York, NY, USA.

Keratoconus is a highly prevalent (1 in 2000), genetically complex and multifactorial, degenerative disease of the cornea whose pathogenesis and underlying transcriptomic changes are poorly understood. To identify disease-specific changes and gene expression networks, we performed next generation RNA sequencing from individual corneas of two distinct patient populations - one from the Middle East, as keratoconus is particularly severe in this group, and the second from an African American population in the United States. We conducted a case: control RNA sequencing study of 7 African American, 12 Middle Eastern subjects, and 7 controls. A Principal Component Analysis of all expressed genes was used to ascertain differences between samples. Differentially expressed genes were identified using Cuffdiff and DESeq2 analyses, and identification of over-represented signaling pathways by Ingenuity Pathway Analysis. Although separated by geography and ancestry, key commonalities in the two patient transcriptomes speak of disease - intrinsic gene expression networks. We identified an overwhelming decrease in the expression of anti-oxidant genes regulated by NRF2 and those of the acute phase and tissue injury response pathways, in both patient groups. Concordantly, NRF2 immunofluorescence staining was decreased in patient corneas, while KEAP1, which helps to degrade NRF2, was increased. Diminished NRF2 signaling raises the possibility of NRF2 activators as future treatment strategies in keratoconus. The African American patient group showed increases in extracellular matrix transcripts that may be due to underlying profibrogenic changes in this group. Transcripts increased across all patient samples include Thrombospondin 2 (THBS2), encoding a matricellular protein, and cellular proteins, GAS1, CASR and OTOP2, and are promising biomarker candidates. Our approach of analyzing transcriptomic data from different populations and patient groups will help to develop signatures and biomarkers for keratoconus subtypes. Further, RNA sequence data on individual patients obtained from multiple studies may lead to a core keratoconus signature of deregulated genes and a better understanding of its pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-66735-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303170PMC
June 2020

A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture.

Methods Mol Biol 2020 ;2145:51-58

Department of Ophthalmology and Pathology, NYU Langone Health, Alexandria Life Sciences Center, New York, NY, USA.

The cornea is the outermost transparent and refractive barrier surface of the eye necessary for vision. Development of the cornea involves the coordinated production of extracellular matrix, epithelial differentiation, and endothelial cell expansion to produce a highly transparent tissue. Here we describe the production of multilayered three-dimensional organoids from human-induced pluripotent stem cells. These organoids have the potential for multiple downstream applications which are currently unattainable using traditional in vitro techniques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0599-8_5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565088PMC
March 2021

Moderate Loss of the Extracellular Matrix Proteoglycan Lumican Attenuates Cardiac Fibrosis in Mice Subjected to Pressure Overload.

Cardiology 2020 22;145(3):187-198. Epub 2020 Jan 22.

Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway,

Introduction: The heart undergoes myocardial remodeling during progression to heart failure following pressure overload. Myocardial remodeling is associated with structural and functional changes in cardiac myocytes, fibroblasts, and the extracellular matrix (ECM) and is accompanied by inflammation. Cardiac fibrosis, the accumulation of ECM molecules including collagens and collagen cross-linking, contributes both to impaired systolic and diastolic function. Insufficient mechanistic insight into what regulates cardiac fibrosis during pathological conditions has hampered therapeutic so-lutions. Lumican (LUM) is an ECM-secreted proteoglycan known to regulate collagen fibrillogenesis. Its expression in the heart is increased in clinical and experimental heart failure. Furthermore, LUM is important for survival and cardiac remodeling following pressure overload. We have recently reported that total lack of LUM increased mortality and left ventricular dilatation, and reduced collagen expression and cross-linking in LUM knockout mice after aortic banding (AB). Here, we examined the effect of LUM on myocardial remodeling and function following pressure overload in a less extreme mouse model, where cardiac LUM level was reduced to 50% (i.e., moderate loss of LUM).

Methods And Results: mRNA and protein levels of LUM were reduced to 50% in heterozygous LUM (LUM+/-) hearts compared to wild-type (WT) controls. LUM+/- mice were subjected to AB. There was no difference in survival between LUM+/- and WT mice post-AB. Echocardiography revealed no striking differences in cardiac geometry between LUM+/- and WT mice 2, 4, and 6 weeks post-AB, although markers of diastolic dysfunction indicated better function in LUM+/- mice. LUM+/- hearts revealed reduced cardiac fibrosis assessed by histology. In accordance, the expression of collagen I and III, the main fibrillar collagens in the heart, and other ECM molecules central to fibrosis, i.e. including periostin and fibronectin, was reduced in the hearts of LUM+/- compared to WT 6 weeks post-AB. We found no differences in collagen cross-linking between LUM+/- and WT mice post-AB, as assessed by histology and qPCR.

Conclusions: Moderate lack of LUM attenuated cardiac fibrosis and improved diastolic dysfunction following pressure overload in mice, adding to the growing body of evidence suggesting that LUM is a central profibrotic molecule in the heart that could serve as a potential therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000505318DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672712PMC
October 2020

Mapping Keratoconus Molecular Substrates by Multiplexed High-Resolution Proteomics of Unpooled Corneas.

OMICS 2019 11 25;23(11):583-597. Epub 2019 Oct 25.

Department of Ophthalmology, NYU Langone Health, New York, New York.

Keratoconus (KCN) is a leading cause for cornea grafting worldwide. Keratoconus is a multifactorial disease that causes progressive thinning of the cornea and whose etiology is poorly understood. Several studies have used proteomics on patient tear fluids to identify potential biomarkers. However, proteome of the cornea itself has not been investigated fully. We report here new findings from a case-control study using multiplexed mass spectrometry (MS) on individual (unpooled) corneas to gain deeper insights into proteins and biomarkers relevant to keratoconus. We employed a high-pressure approach to extract total protein from individual corneas from five cases and five controls, followed by trypsin digestion and tandem mass tag (TMT) labeling. The MS-derived data were searched using the Human NCBI RefSeq protein database v92, with peptides and proteins filtered at 1% false discovery rate. A total of 3132 proteins were detected, of which 627 were altered significantly ( ≤ 0.05) in keratoconus corneas. The increases were overwhelmingly in the mTOR/PI3/AKT signal-mediated regulations of cell survival and proliferation, nonsense-mediated decay of transcripts, and proteasomal pathways. The decreases were in several extracellular matrix proteins and in many members of the complement system. Importantly, this multiplexed proteomic study of keratoconus corneas identified, to our knowledge, the largest number of corneal proteins. The novel findings include changes in pathways that regulate transcript stability, proteasomal degradation, and the complement system in corneas with keratoconus. These observations offer new prospects toward future discovery of novel molecular targets for diagnostic and therapeutic innovations for patients with keratoconus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2019.0143DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857467PMC
November 2019

Small Molecule Modulation of the Integrated Stress Response Governs the Keratoconic Phenotype In Vitro.

Invest Ophthalmol Vis Sci 2019 08;60(10):3422-3431

Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.

Purpose: The degenerative corneal disease keratoconus is a leading indicator for corneal transplant with an unknown etiology. We recently identified the activation of the integrated stress response (ISR) in ex vivo human corneas and in vitro cell culture. Utilizing small molecules to modulate the ISR we sought to investigate the effects of stimulating the ISR in healthy cells to recapitulate aspects of the in vitro keratoconic phenotype and whether relieving the ISR signaling would recover the disease phenotype.

Methods: Corneal fibroblasts were extracted from patients undergoing corneal transplant or unaffected cadaverous donor limbal rings. Cells were exposed to the DNA damage-inducible protein (GADD34) inhibitor SAL003 to stimulate the ISR, or Trans-ISRIB to relieve ISR signaling pathway. Collagen production was assessed through hydroxyproline production, Sirius Red incorporation, or quantitative (q)PCR. Western blotting, hydroxyproline, and qPCR were used to assess components of the ISR pathway and collagen production.

Results: ISR stimulation through SAL003 resulted in significant decrease of hydroxyproline and COL1A1 transcription and eventual apoptosis in normal fibroblasts. Patient (KC) fibroblast production of hydroxyproline was increased in response to ISRIB, while matrix metalloproteinase (MMP)9 production was lowered. The prospective biomarker of keratoconus prolactin-inducible factor was also upregulated in KC fibroblast cultures in response to ISRIB. Inflammatory markers TNFα and IL-1β were unaffected.

Conclusions: Activation of the ISR is sufficient to recapitulate many key aspects of the KC phenotype in unaffected cells in vitro. Inhibition of the ISR also relieves many of the hallmarks of KC in affected cells. Therefore, targeting of the ISR through small molecules is a potential therapeutic path for small molecule treatment of keratoconus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.19-27151DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686743PMC
August 2019

The extracellular matrix proteoglycan lumican improves survival and counteracts cardiac dilatation and failure in mice subjected to pressure overload.

Sci Rep 2019 06 24;9(1):9206. Epub 2019 Jun 24.

Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.

Left ventricular (LV) dilatation is a key step in transition to heart failure (HF) in response to pressure overload. Cardiac extracellular matrix (ECM) contains fibrillar collagens and proteoglycans, important for maintaining tissue integrity. Alterations in collagen production and cross-linking are associated with cardiac LV dilatation and HF. Lumican (LUM) is a collagen binding proteoglycan with increased expression in hearts of patients and mice with HF, however, its role in cardiac function remains poorly understood. To examine the role of LUM in pressure overload induced cardiac remodeling, we subjected LUM knock-out (LUMKO) mice to aortic banding (AB) and treated cultured cardiac fibroblasts (CFB) with LUM. LUMKO mice exhibited increased mortality 1-14 days post-AB. Echocardiography revealed increased LV dilatation, altered hypertrophic remodeling and exacerbated contractile dysfunction in surviving LUMKO 1-10w post-AB. LUMKO hearts showed reduced collagen expression and cross-linking post-AB. Transcriptional profiling of LUMKO hearts by RNA sequencing revealed 714 differentially expressed transcripts, with enrichment of cardiotoxicity, ECM and inflammatory pathways. CFB treated with LUM showed increased mRNAs for markers of myofibroblast differentiation, proliferation and expression of ECM molecules important for fibrosis, including collagens and collagen cross-linking enzyme lysyl oxidase. In conclusion, we report the novel finding that lack of LUM attenuates collagen cross-linking in the pressure-overloaded heart, leading to increased mortality, dilatation and contractile dysfunction in mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-45651-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591256PMC
June 2019

Syndecan-1 Regulates Psoriasiform Dermatitis by Controlling Homeostasis of IL-17-Producing γδ T Cells.

J Immunol 2018 09 25;201(6):1651-1661. Epub 2018 Jul 25.

Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205;

IL-17 is a potent proinflammatory cytokine that drives pathogenesis of multiple autoimmune diseases, including psoriasis. A major source of pathogenic IL-17 is a subset of γδ T cells (Tγδ17) that acquires the ability to produce IL-17 while developing in the thymus. The mechanisms that regulate homeostasis of Tγδ17 cells and their roles in psoriasis, however, are not fully understood. In this paper, we show that the heparan sulfate proteoglycan syndecan-1 (sdc1) plays a critical role in regulating homeostasis of Tγδ17 cells and modulating psoriasis-like skin inflammation in mice. sdc1 was predominantly expressed by Tγδ17 cells (but not IL-17 Tγδ cells) in the thymus, lymph nodes, and dermis. sdc1 deficiency significantly and selectively increased the frequency and absolute numbers of Tγδ17 cells by mechanisms that included increased proliferation and decreased apoptosis. Adoptive transfer experiments ruled out a significant role of sdc1 expressed on nonhematopoietic cells in halting expansion and proliferation of sdc1-deficient Tγδ17 cells. When subjected to imiquimod-induced psoriasiform dermatitis, Tγδ17 cells in sdc1KO mice displayed heightened responses accompanied by significantly increased skin inflammation than their wild-type counterparts. Furthermore, transferred sdc1-deficient γδ T cells caused more severe psoriasiform dermatitis than their sdc1-sufficient counterparts in TCR-βδ KO hosts. The results uncover a novel role for sdc1 in controlling homeostasis of Tγδ17 cells and moderating host responses to psoriasis-like inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1800104DOI Listing
September 2018

Integrated Stress Response and Decreased ECM in Cultured Stromal Cells From Keratoconus Corneas.

Invest Ophthalmol Vis Sci 2018 06;59(7):2977-2986

Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.

Purpose: Keratoconus (KC) is a multifactorial disease where progressive thinning and weakening of the cornea leads to loss of visual acuity. Although the underlying etiology is poorly understood, a major endpoint is a dysfunctional stromal connective tissue matrix. Using multiple individual KC corneas, we determined that matrix production by keratocytes is severely impeded due to an altered stress response program.

Methods: KC and donor (DN) stromal keratocytes were cultured in low glucose serum-free medium containing insulin, selenium and transferrin. Fibronectin, collagens and proteins related to their chaperone, processing and export, matrix metalloproteinase, and stress response related proteins were investigated by immunoblotting, immunocytochemistry, hydroxyproline quantification, and gelatin zymography. Multiplexed mass spectrometry was used for global proteomic profiling of 5 individual DN and KC cell culture. Transcription of selected proteins was assayed by qPCR.

Results: DN and KC cells showed comparable survival and growth. However, immunoblotting of selected ECM proteins and global proteomics showed decreased fibronectin, collagens, PCOLCE, ADAMTS2, BMP1, HSP47, other structural and cytoskeletal proteins in KC. Phosphorylated (p) eIF2α, a translation regulator and its target, ATF4 were increased in KC cultured cells and corneal sections.

Conclusions: The profound decrease in structural proteins in cultured KC cells and increase in the p-eIF2α, and ATF4, suggest a stress related blockade in structural proteins not immediately needed for cell survival. Therefore, this cell culture system reveals an intrinsic aggravated stress response with consequent decrease in ECM proteins as potential pathogenic underpinnings in KC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.18-24367DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995483PMC
June 2018

Pathophysiology of Keratoconus: What Do We Know Today.

Open Ophthalmol J 2017 31;11:252-261. Epub 2017 Jul 31.

Cornea Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA.

Keratoconus is a common corneal ectasia that leads to progressive visual impairment. Numerous studies have shown abnormal protein expression patterns in keratoconic corneas. However, the specific mechanisms causing this disease remain ambiguous. This review aims to provide an update on morphological studies of the keratoconic cornea, relate these early studies with current findings from proteomic, biochemical and cell culture studies and to postulate possible pathogenic pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1874364101711010252DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585454PMC
July 2017

Fibrillin Microfibrils Keep the Cornea in Shape.

Invest Ophthalmol Vis Sci 2017 04;58(4):2117

Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States;

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.17-21840DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108237PMC
April 2017

Cornea organoids from human induced pluripotent stem cells.

Sci Rep 2017 01 27;7:41286. Epub 2017 Jan 27.

Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.

The cornea is the transparent outermost surface of the eye, consisting of a stratified epithelium, a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea, harboring three distinct cell types with expression of key epithelial, stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep41286DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5269590PMC
January 2017

Small leucine-rich repeat proteoglycans in corneal inflammation and wound healing.

Exp Eye Res 2016 10 26;151:142-9. Epub 2016 Aug 26.

Department of Medicine, Johns Hopkins School of Medicine, Baltimore, USA; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, USA; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, USA. Electronic address:

The small leucine rich repeat proteoglycans are major components of the cornea. Lumican, keratocan, decorin, biglycan and osteoglycin are present throughout the adult corneal stroma, and fibromodulin in the peripheral limbal area. In the cornea literature these proteoglycan have been reviewed as structural, collagen fibril-regulating proteins of the cornea. However, these proteoglycans are members of the leucine-rich-repeat superfamily, and share structural similarities with pathogen recognition toll-like receptors. Emerging studies are showing that these have a range of interactions with cell surface receptors, chemokines, growth factors and pathogen associated molecular patterns and are able to regulate host immune response, inflammation and wound healing. This review discusses what is known about their innate immune-related role directly in the cornea, and studies outside the field that find interesting links with innate immune and wound healing responses that are likely to be relevant to the ocular surface. In addition, the review discusses phenotypes of mice with targeted deletion of proteoglycan genes and genetic variants associated with human pathologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2016.08.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204247PMC
October 2016

Development of myotendinous-like junctions that anchor cardiac valves requires fibromodulin and lumican.

Dev Dyn 2016 10 25;245(10):1029-42. Epub 2016 Aug 25.

Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina.

Background: There are many patients that exhibit connective tissue related cardiac malformations but do not have mutations in collagen genes. The Small Leucine Rich Proteoglycans (SLRP) fibromodulin (FMOD) and lumican (LUM) bind collagen and regulate fibril assembly in other biological contexts.

Results: FMOD deficient mice and double deficient FMOD; LUM mice exhibited anomalies in regions where cardiac valve tissue interdigitates with adjacent muscle for support. Ectopic connective and/or myocardial tissue(s) was associated with the more severe cardiac valve anomalies in FMOD; LUM deficient mice. At postnatal day 0 (P0) there was an increase in the mesenchymal cell number in the regions where valve cusps anchor in FMOD; LUM deficient mice compared to WT. The cardiac valve anomalies correlated with the highest levels of FMOD expression in the heart and also where myotendinous junctions (MTJ) components biglycan, collagen type I alpha 1, and collagen type VI, are also localized.

Conclusions: The postnatal assembly of the collagen-rich ECM in regions where cardiac valves anchor, that we have designated 'myotendinous-like junctions' (MTLJ) requires the SLRPs FMOD and LUM. Moreover, FMOD and LUM may facilitate mesenchymal cell differentiation in late stages of cardiac valve development. Developmental Dynamics 245:1029-1042, 2016. © 2016 Wiley Periodicals, Inc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.24435DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026634PMC
October 2016

Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

PLoS One 2016 1;11(3):e0150226. Epub 2016 Mar 1.

CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne, Laboratoire de Biochimie Médicale et de Biologie Moléculaire, Reims, France.

Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150226PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773148PMC
July 2016

Functions of Peptidoglycan Recognition Proteins (Pglyrps) at the Ocular Surface: Bacterial Keratitis in Gene-Targeted Mice Deficient in Pglyrp-2, -3 and -4.

PLoS One 2015 2;10(9):e0137129. Epub 2015 Sep 2.

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.

Purpose: Functions of antimicrobial peptidoglycan recognition proteins (Pglyrp1-4) at the ocular surface are poorly understood. Earlier, we reported an antibacterial role for Pglyrp-1 in Pseudomonas aeruginosa keratitis. Here we investigated functions of three other related genes Pglyrp-2, -3 and -4 in a mouse model of P. aeruginosa keratitis.

Methods: Wild type (WT) and each of the Pglyrp-null genotypes were challenged with P. aeruginosa keratitis. The eyes were scored in a blinded manner 24 and 48h post infection. Viable bacterial counts and inflammatory factors (IL-12, TNF-α, IFN-γ, CCL2, IL-6 and IL-10) were measured in whole eye homogenates using cytometric bead arrays. Expressions of Pglyrp-1-4, mouse beta defensins (mBD)-2,-3, cathelicidin-related antimicrobial peptide (CRAMP) were determined by qRTPCR in total RNA extracts of uninfected and infected eyes of WT and each of the Pglyrp-null mouse types.

Results: The Pglyrp-2-/- mice showed reduced disease and lower induction of pro-inflammatory TNF-α (p = 0.02) than WT or the other Pglyrp null mice. Viable bacterial yield was significantly lower in the Pglyrp-2-/- (p = 0.0007) and the Pglyrp-4-/- (p = 0.098) mice. With regards to expression of these antimicrobial genes, Pglyrp-2 expression was induced after infection in WT mice. Pglyrp-3 expression was low before and after infection in WT mice, while Pglyrp-4 expression was slightly elevated after infection in WT, Pglyrp-2 and -3 null mice. Pglyrp-1 expression was slightly elevated after infection in all genotypes without statistical significance. Transcripts for antimicrobial peptides mBD2, mBD3 and CRAMP were elevated in infected Pglyrp-2-/- males without statistical significance.

Conclusions: Efficient resolution of keratitis in the Pglyrp-2-/- mice may be due to a reduced pro-inflammatory microenvironment and synergistic antibacterial activities of defensins, CRAMP and Pglyrp-1. Therefore, in ocular infections the pro-inflammatory functions of Pglyrp-2 must be regulated to benefit the host.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137129PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558058PMC
May 2016

Proteomics of human aqueous humor.

OMICS 2015 May;19(5):283-93

1 Institute of Bioinformatics , International Tech Park, Bangalore, India .

The aqueous humor is a colorless, transparent fluid that fills the anterior chamber of the eye. It plays an important role in maintaining the intraocular pressure and providing nourishment to the lens and cornea. The constitution of the aqueous humor is controlled by the blood-aqueous barrier. Though this ocular fluid has been extensively studied, its role in ocular physiology is still not completely understood. In this study, aqueous humor samples were collected from 250 patients undergoing cataract surgery, subjected to multiple fractionation strategies and analyzed on a Fourier transform LTQ-Orbitrap Velos mass spectrometer. In all, we identified 763 proteins, of which 386 have been identified for the first time in this study. Sorbitol dehydrogenase (SORD), filensin (BFSP1), and phakinin (BFSP2) are some of the proteins that have not been previously reported in the aqueous humor. Gene Ontology analysis revealed 35% of the identified proteins to be extracellular, with a majority of them involved in cell communication and signal transduction. This study comprehensively reports 386 novel proteins that have important potential as biomarker candidates for future research into personalized medicine and diagnostics aimed towards improving visual health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2015.0029DOI Listing
May 2015

Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly.

J Mol Cell Cardiol 2015 Jul 15;84:70-80. Epub 2015 Apr 15.

Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States. Electronic address:

The ability of the heart to adapt to increased stress is dependent on the modification of its extracellular matrix (ECM) architecture that is established during postnatal development as cardiomyocytes differentiate, a process that is poorly understood. We hypothesized that the small leucine-rich proteoglycan (SLRP) lumican (LUM), which binds collagen and facilitates collagen assembly in other tissues, may play a critical role in establishing the postnatal murine myocardial ECM. Although previous studies suggest that LUM deficient mice (lum(-/-)) exhibit skin anomalies consistent with Ehlers-Danlos syndrome, lum(-/-) hearts have not been evaluated. These studies show that LUM was immunolocalized to non-cardiomyocytes of the cardiac ventricles and its expression increased throughout development. Lumican deficiency resulted in significant (50%) perinatal death and further examination of the lum(-/-) neonatal hearts revealed an increase in myocardial tissue without a significant increase in cell proliferation. However cardiomyocytes from surviving postnatal day 0 (P0), 1 month (1 mo) and adult (4 mo) lum(-/-) hearts were significantly larger than their wild type (WT) littermates. Immunohistochemistry revealed that the increased cardiomyocyte size in the lum(-/-) hearts correlated with alteration of the cardiomyocyte pericellular ECM components collagenα1(I) and the class I SLRP decorin (DCN). Western blot analysis demonstrated that the ratio of glycosaminoglycan (GAG) decorated DCN to core DCN was reduced in P0 and 1 mo lum(-/-) hearts. There was also a reduction in the β and γ forms of collagenα1(I) in lum(-/-) hearts. While the total insoluble collagen content was significantly reduced, the fibril size was increased in lum(-/-) hearts, indicating that LUM may play a role in collagen fiber stability and lateral fibril assembly. These results suggest that LUM controls cardiomyocyte growth by regulating the pericellular ECM and also indicates that LUM may coordinate multiple factors of collagen assembly in the murine heart. Further investigation into the role of LUM may yield novel therapeutic targets and/or biomarkers for patients with cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2015.04.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468017PMC
July 2015

Transforming growth factor β and insulin signal changes in stromal fibroblasts of individual keratoconus patients.

PLoS One 2014 23;9(9):e106556. Epub 2014 Sep 23.

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.

Keratoconus (KC) is a complex thinning disease of the cornea that often requires transplantation. The underlying pathogenic molecular changes in this disease are poorly understood. Earlier studies reported oxidative stress, metabolic dysfunctions and accelerated death of stromal keratocytes in keratoconus (KC) patients. Utilizing mass spectrometry we found reduced stromal extracellular matrix (ECM) proteins in KC, suggesting ECM-regulatory changes that may be due to altered TGFβ signals. Here we investigated properties of stromal cells from donor (DN) and KC corneas grown as fibroblasts in serum containing DMEM: F12 or in serum-free medium containing insulin, transferrin, selenium (ITS). Phosphorylation of SMAD2/3 of the canonical TGFβ pathway, was high in serum-starved DN and KC fibroblast protein extracts, but pSMAD1/5/8 low at base line, was induced within 30 minutes of TGFβ1 stimulation, more so in KC than DN, suggesting a novel TGFβ1-SMAD1/5/8 axis in the cornea, that may be altered in KC. The serine/threonine kinases AKT, known to regulate proliferation, survival and biosynthetic activities of cells, were poorly activated in KC fibroblasts in high glucose media. Concordantly, alcohol dehydrogenase 1 (ADH1), an indicator of increased glucose uptake and metabolism, was reduced in KC compared to DN fibroblasts. By contrast, in low glucose (5.5 mM, normoglycemic) serum-free DMEM and ITS, cell survival and pAKT levels were comparable in KC and DN cells. Therefore, high glucose combined with serum-deprivation presents some cellular stress difficult to overcome by the KC stromal cells. Our study provides molecular insights into AKT and TGFβ signal changes in KC, and a mechanism for functional studies of stromal cells from KC corneas.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106556PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172437PMC
June 2015

Interclass small leucine-rich repeat proteoglycan interactions regulate collagen fibrillogenesis and corneal stromal assembly.

Matrix Biol 2014 Apr 18;35:103-11. Epub 2014 Jan 18.

Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, United States. Electronic address:

The corneal stroma is enriched in small leucine-rich proteoglycans (SLRPs), including both class I (decorin and biglycan) and class II (lumican, keratocan and fibromodulin). Transparency is dependent on the assembly and maintenance of a hierarchical stromal organization and SLRPs are critical regulatory molecules. We hypothesize that cooperative interclass SLRP interactions are involved in the regulation of stromal matrix assembly. We test this hypothesis using a compound Bgn(-/0)/Lum(-/-) mouse model and single Lum(-/-) or Bgn(-/0) mouse models and wild type controls. SLRP expression was investigated using immuno-localization and immuno-blots. Structural relationships were defined using ultrastructural and morphometric approaches while transparency was analyzed using in vivo confocal microscopy. The compound Bgn(-/0)/Lum(-/-) corneas demonstrated gross opacity that was not seen in the Bgn(-/0) or wild type corneas and greater than that in the Lum(-/-) mice. The Bgn(-/0)/Lum(-/-) corneas exhibited significantly increased opacity throughout the stroma compared to posterior opacity in the Lum(-/-) and no opacity in Bgn(-/0) or wild type corneas. In the Bgn(-/0)/Lum(-/-) corneas there were abnormal lamellar and fibril structures consistent with the functional deficit in transparency. Lamellar structure was disrupted across the stroma with disorganized fibrils, and altered fibril packing. In addition, fibrils had larger and more heterogeneous diameters with an abnormal structure consistent with abnormal fibril growth. This was not observed in the Bgn(-/0) or wild type corneas and was restricted to the posterior stroma in Lum(-/-) mice. The data demonstrate synergistic interclass regulatory interactions between lumican and biglycan. These interactions are involved in regulating both lamellar structure as well as collagen fibrillogenesis and therefore, corneal transparency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.matbio.2014.01.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039618PMC
April 2014

Susceptibility to glaucoma damage related to age and connective tissue mutations in mice.

Exp Eye Res 2014 Feb 22;119:54-60. Epub 2013 Dec 22.

Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Departments of Ophthalmology, Baltimore, MD, United States. Electronic address:

The purpose of this research was to study the effects of age and genetic alterations in key connective tissue proteins on susceptibility to experimental glaucoma in mice. We used mice haploinsufficient in the elastin gene (EH) and mice without both alleles of the fibromodulin gene (FM KO) and their wild type (WT) littermates of B6 and CD1 strains, respectively. FM KO mice were tested at two ages: 2 months and 12 months. Intraocular pressure (IOP) was measured by Tonolab tonometer, axial lengths and widths measured by digital caliper post-enucleation, and chronic glaucoma damage was measured using a bead injection model and optic nerve axon counts. IOP in EH mice was not significantly different from WT, but FM KO were slightly lower than their controls (p = 0.04). Loss of retinal ganglion cell (RGC) axons was somewhat, but not significantly greater in young EH and younger or older FM KO strains than in age-matched controls (p = 0.48, 0.34, 0.20, respectively, multivariable regression adjusting for IOP exposure). Older CD1 mice lost significantly more RGC axons than younger CD1 (p = 0.01, multivariable regression). The CD1 mouse strain showed age-dependence of experimental glaucoma damage to RGC in the opposite, and more expected, direction than in B6 mice in which older mice are more resistant to damage. Genetic alteration in two genes that are constituents of sclera, fibromodulin and elastin do not significantly affect RGC loss.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2013.12.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967240PMC
February 2014

Characterizing the normal proteome of human ciliary body.

Clin Proteomics 2013 Aug 1;10(1). Epub 2013 Aug 1.

Johns Hopkins University School of Medicine, Baltimore 21205, MD, USA.

Background: The ciliary body is the circumferential muscular tissue located just behind the iris in the anterior chamber of the eye. It plays a pivotal role in the production of aqueous humor, maintenance of the lens zonules and accommodation by changing the shape of the crystalline lens. The ciliary body is the major target of drugs against glaucoma as its inhibition leads to a drop in intraocular pressure. A molecular study of the ciliary body could provide a better understanding about the pathophysiological processes that occur in glaucoma. Thus far, no large-scale proteomic investigation has been reported for the human ciliary body.

Results: In this study, we have carried out an in-depth LC-MS/MS-based proteomic analysis of normal human ciliary body and have identified 2,815 proteins. We identified a number of proteins that were previously not described in the ciliary body including importin 5 (IPO5), atlastin-2 (ATL2), B-cell receptor associated protein 29 (BCAP29), basigin (BSG), calpain-1 (CAPN1), copine 6 (CPNE6), fibulin 1 (FBLN1) and galectin 1 (LGALS1). We compared the plasma proteome with the ciliary body proteome and found that the large majority of proteins in the ciliary body were also detectable in the plasma while 896 proteins were unique to the ciliary body. We also classified proteins using pathway enrichment analysis and found most of proteins associated with ubiquitin pathway, EIF2 signaling, glycolysis and gluconeogenesis.

Conclusions: More than 95% of the identified proteins have not been previously described in the ciliary body proteome. This is the largest catalogue of proteins reported thus far in the ciliary body that should provide new insights into our understanding of the factors involved in maintaining the secretion of aqueous humor. The identification of these proteins will aid in understanding various eye diseases of the anterior segment such as glaucoma and presbyopia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1559-0275-10-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750387PMC
August 2013

The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration.

J Proteomics 2013 Jul 29;87:122-31. Epub 2013 May 29.

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Unlabelled: Keratoconus is a thinning corneal dystrophy that begins in the early teenage years and ultimately requires cornea transplantation to restore vision. Here we conducted a highly sensitive mass spectrometric analysis of the epithelium and the stroma from keratoconus and normal donor corneas. We identified a total of 932 and 1157 proteins in the consolidated data of the epithelium and stroma, respectively. Technical replicates showed strong correlations (≥0.88) in levels of all common proteins, indicating very low technical variations in the data. Analysis of the most increased (≥1.5 fold) and decreased (≤0.8 fold) proteins in the keratoconus corneal epithelial protein extracts identified proteins related to dermal diseases, inflammation, epithelial stratification and mesenchymal changes. Increased proteins included keratins 6A, 16 and vimentin, while the iron transporter lactotransferrin was decreased. The keratoconus stromal proteome suggests endoplasmic reticular stress, oxidative stress and widespread decreases in many extracellular matrix proteoglycan core proteins, lumican and keratocan, collagen types I, III, V and XII. Marked increase in apoptosis and endocytosis-related proteins suggest degenerative changes in keratocytes, the resident cells of the stroma. This is the most comprehensive proteome analysis of the cornea that highlights similarities of keratoconus with other neurodegenerative diseases.

Biological Significance: This study provides, to our knowledge, the most comprehensive proteomic analysis of the vision threatening disease keratoconus, which affects a significant portion of the US and global populations. Using iTRAQ and LC/MS/MS, we have identified significant changes in the human corneal epithelium and stromal proteome that correlate to in vivo clinical findings. The protein changes identified will lead to molecular insights into disease pathogenesis and provide candidate genes for genetic studies of keratoconus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2013.05.023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721369PMC
July 2013

L450W and Q455K Col8a2 knock-in mouse models of Fuchs endothelial corneal dystrophy show distinct phenotypes and evidence for altered autophagy.

Invest Ophthalmol Vis Sci 2013 Mar 28;54(3):1887-97. Epub 2013 Mar 28.

Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA.

Purpose: We compared the cellular phenotypes and studied the role of autophagy in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD) using two α2 collagen VIII (Col8a2) knock-in mouse models and human FECD tissues.

Methods: In vivo corneal endothelial cell (CEC) counts and morphology were analyzed by clinical confocal microscopy. Ultrastructural analysis of CECs was performed by transmission electron microscopy. Real-time PCR and Western blotting were performed using total RNA, and protein extracted from mouse CECs and human CECs obtained from FECD and autopsy patients.

Results: Both Col8a2 mouse models exhibited hallmarks of FECD; however, the Col8a2(L450W/L450W) mice exhibited a milder phenotype compared to the Col8a2(Q455K/Q455K) mice. Both models exhibited upregulation of the unfolded protein response (UPR) as evidenced by dilated rough endoplasmic reticulum (RER), and upregulation of UPR-associated genes and proteins. Real-time PCR of Col8a2(L450W/L450W) and Col8a2(Q455K/Q455K) CECs at 40 weeks revealed a 2.1-fold (P < 0.05) and a 5.2-fold (P < 0.01) upregulation of the autophagy marker Dram1, respectively. Real-time PCR of human FECD endothelium revealed a 10.4-fold upregulation of DRAM1 (P < 0.0001) compared to autopsy controls.

Conclusions: The Col8a2(L450W/L450W) and Col8a2(Q455K/Q455K) mouse models of FECD showed distinct endothelial cell phenotypes. Dram1 was associated with activation of the UPR and increased autophagy. Overexpression of this gene in mouse and human FECD endothelial cells suggested a role for altered autophagy in this disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.12-11021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626522PMC
March 2013

Extracellular matrix protein lumican promotes clearance and resolution of Pseudomonas aeruginosa keratitis in a mouse model.

PLoS One 2013 24;8(1):e54765. Epub 2013 Jan 24.

Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.

Lumican is an extracellular protein that associates with CD14 on the surface of macrophages and neutrophils, and promotes CD14-TLR4 mediated response to bacterial lipopolysaccharides (LPS). Lumican-deficient (Lum(-/-)) mice and macrophages are impaired in TLR4 signals; raising the possibility that lumican may regulate host response to live bacterial infections. In a recent study we showed that invitro Lum(-/-) macrophages are impaired in phagocytosis of gram-negative bacteria and in a lung infection model the Lum(-/-) mice showed poor survival. The cornea is an immune privileged barrier tissue that relies primarily on innate immunity to protect against ocular infections. Lumican is a major component of the cornea, yet its role in counteracting live bacteria in the cornea remains poorly understood. Here we investigated Pseudomonas aeruginosa infections of the cornea in Lum(-/-) mice. By flow cytometry we found that 24 hours after infection macrophage and neutrophil counts were lower in the cornea of Lum(-/-) mice compared to wild types. Infected Lum(-/-) corneas showed lower levels of the leukocyte chemoattractant CXCL1 by 24-48 hours of infection, and increased bacterial counts up to 5 days after infection, compared to Lum(+/-) mice. The pro-inflammatory cytokine TNF-α was comparably low 24 hours after infection, but significantly higher in the Lum(-/-) compared to Lum(+/-) infected corneas by 2-5 days after infection. Taken together, the results indicate that lumican facilitates development of an innate immune response at the earlier stages of infection and lumican deficiency leads to poor bacterial clearance and resolution of corneal inflammation at a later stage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054765PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554612PMC
September 2013

Extracellular matrix lumican promotes bacterial phagocytosis, and Lum-/- mice show increased Pseudomonas aeruginosa lung infection severity.

J Biol Chem 2012 Oct 3;287(43):35860-72. Epub 2012 Aug 3.

Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Phagocytosis is central to bacterial clearance, but the exact mechanism is incompletely understood. Here, we show a novel and critical role for lumican, the connective tissue extracellular matrix small leucine-rich repeat proteoglycan, in CD14-mediated bacterial phagocytosis. In Psuedomonas aeruginosa lung infections, lumican-deficient (Lum(-/-)) mice failed to clear the bacterium from lungs, tissues, and showed a dramatic increase in mortality. In vitro, phagocytosis of nonopsonized gram-negative Escherichia coli and P. aeruginosa was inhibited in Lum(-/-) peritoneal macrophages (MΦs). Lumican co-localized with CD14, CD18, and bacteria on Lum(+/+) MΦ surfaces. Using two different P. aeruginosa strains that require host CD14 (808) or CD18/CR3 (P1) for phagocytosis, we showed that lumican has a larger role in CD14-mediated phagocytosis. Recombinant lumican (rLum) restored phagocytosis in Lum(-/-) MΦs. Surface plasmon resonance showed specific binding of rLum to CD14 (K(A) = 2.15 × 10(6) M(-1)), whereas rLumY20A, and not rLumY21A, where a tyrosine in each was replaced with an alanine, showed 60-fold decreased binding. The rLumY20A variant also failed to restore phagocytosis in Lum(-/-) MΦs, indicating Tyr-20 to be functionally important. Thus, in addition to a structural role in connective tissues, lumican has a major protective role in gram-negative bacterial infections, a novel function for small leucine-rich repeat proteoglycans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M112.380550DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476255PMC
October 2012

Sphere formation from corneal keratocytes and phenotype specific markers.

Exp Eye Res 2011 Dec 21;93(6):898-905. Epub 2011 Oct 21.

Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.

The keratocytes are specialized mesenchymal cells that produce and maintain the extracellular matrix of the corneal stroma. With a typical dendritic and flattened appearance, these cells can morph into fibroblasts and myofibroblasts upon injury, and produce abnormal or fibrotic extracellular matrices detrimental to corneal transparency. Insights into mechanisms that regulate these phenotypic switches and optimal culture conditions that preserve the keratocyte phenotype are important for tissue engineering of the corneal stroma. Like other cell types with self-renewing capacity, keratocytes can form spheres in culture. Here we investigated human and bovine keratocytes with respect to their sphere forming capabilities, and sought to identify potentially distinguishing markers for the keratocyte and fibroblast phenotypes. Keratocytes, isolated from bovine and human corneas, cultured in serum-free medium supplemented with insulin, selenium and transferrin, assumed typical keratocyte morphology, converted to fibroblasts in serum-containing medium and reverted to keratocytes after serum-deprivation. The bovine keratocytes produced spheres under adherent or low attachment conditions, while the human keratocytes produced spheres under low attachment conditions only. The primary keratocytes and fibroblasts expressed vimentin, confirming their mesenchymal origin. Keratocan, considered to be a marker for keratocytes, was also detected in early passage bovine fibroblasts. BMP3 was expressed in keratocytes and keratocyte-derived spheres, while cadherin 5 in keratocytes only, suggesting these as potential keratocyte markers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2011.10.004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225580PMC
December 2011

A cellular model for the investigation of Fuchs' endothelial corneal dystrophy.

Exp Eye Res 2011 Dec 18;93(6):880-8. Epub 2011 Oct 18.

The Division of Cornea & Anterior Segment, Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.

Fuchs' endothelial corneal dystrophy is the most common corneal endotheliopathy, and a leading indication for corneal transplantation in the US. Relatively little is known about its underlying pathology. We created a cellular model of the disease focusing on collagen VIII alpha 2 (COL8A2), a collagen which is normally present in the cornea, but which is found in abnormal amounts and distribution in both early and late-onset forms of the disease. We performed cellular transfections using COL8A2 cDNAs including both wild-type and mutant alleles which are known to result in early-onset FECD. We used this cell model to explore the cellular production of wild-type and mutant monomeric and trimeric collagen VIII and measured production levels and patterns using Western blotting and immunofluorescence. We studied the thermal stability of the mutated collagen VIII helices using computer modeling, and further investigated these differences using collagen mimetic peptides. The Western blots demonstrated that similar amounts of wild-type and mutant collagen VIII monomers were produced in the cells. However, the levels of trimeric collagen peptide in the mutant-transfected cells were elevated. Intracellular accumulation of trimeric collagen VIII was confirmed on immunofluorescence studies. Both the computer model and the collagen mimetic peptides demonstrated that the L450W mutant was less thermally stable than either the Q455K or wild-type collagen VIII. Thus, although both mutant collagen VIII peptides were retained intracellularly, the biochemical reasons for the retention varied between genotypes. Collagen VIII mutations, which clinically result in Fuchs' dystrophy, are associated with abnormal cellular accumulation of collagen VIII. Different collagen VIII mutations may act via distinct biochemical mechanisms to produce the FECD phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2011.10.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225702PMC
December 2011

An alpha 2 collagen VIII transgenic knock-in mouse model of Fuchs endothelial corneal dystrophy shows early endothelial cell unfolded protein response and apoptosis.

Hum Mol Genet 2012 Jan 14;21(2):384-93. Epub 2011 Oct 14.

Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA.

Fuchs endothelial corneal dystrophy (FECD) is a leading indication for corneal transplantation. FECD is characterized by progressive alterations in endothelial cell morphology, excrescences (guttae) and thickening of the endothelial basement membrane and cell death. Ultimately, these changes lead to corneal edema and vision loss. Due to the lack of vision loss in early disease stages and the decades long disease course, early pathophysiology in FECD is virtually unknown as studies of pathologic tissues have been limited to end-stage tissues obtained at transplant. The first genetic defect shown to cause FECD was a point mutation causing a glutamine to lysine substitution at amino acid position 455 (Q455K) in the alpha 2 collagen 8 gene (COL8A2) which results in an early onset form of the disease. Homozygous mutant knock-in mice with this mutation (Col8a2(Q455K/Q455K)) show features strikingly similar to human disease, including progressive alterations in endothelial cell morphology, cell loss and basement membrane guttae. Ultrastructural analysis shows the predominant defect as dilated endoplasmic reticulum (ER), suggesting ER stress and unfolded protein response (UPR) activation. Immunohistochemistry, western blotting, quantitative reverse transcriptase polymerase chain reaction and terminal deoxynucleotidyl transferase 2-deoxyuridine, 5-triphosphate nick end-labeling analyses support UPR activation and UPR-associated apoptosis in the Col8a2(Q455K/Q455K) mutant corneal endothelium. This study confirms the Q455K substitution in the COL8A2 gene as being sufficient to cause FECD in the first mouse model of this disease and supports the role of the UPR and UPR-associated apoptosis in the pathogenesis of FECD caused by COL8A2 mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddr473DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276279PMC
January 2012