Publications by authors named "Shoji Ichikawa"

44 Publications

Reticular dysgenesis caused by an intronic pathogenic variant in .

Cold Spring Harb Mol Case Stud 2020 06 12;6(3). Epub 2020 Jun 12.

MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.

Reticular dysgenesis is a form of severe combined immunodeficiency (SCID) caused by biallelic pathogenic variants in Here we present the case of a boy diagnosed with SCID following a positive newborn screen (NBS). Genetic testing revealed a homozygous variant: c.330 + 5G > A. In silico analyses predicted weakened native donor splice site. However, this variant was initially classified as a variant of uncertain significance (VUS) given lack of direct evidence. To determine the impact on splicing, we analyzed RNA from the proband and his parents, using massively parallel RNA-seq of cloned RT-PCR products. Analysis showed that c.330 + 5G > A results in exon 3 skipping, which encodes a critical region of the AK2 protein. With these results, the variant was upgraded to pathogenic, and the patient was given a diagnosis of reticular dysgenesis. Interpretation of VUS at noncanonical splice site nucleotides presents a challenge. RNA sequencing provides an ideal platform to perform qualitative and quantitative assessment of intronic VUS, which can lead to reclassification if a significant impact on mRNA is observed. Genetic disorders of hematopoiesis and immunity represent fruitful areas to apply RNA-based analysis for variant interpretation given the high expression of RNA in blood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/mcs.a005017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7304357PMC
June 2020

Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency.

Genet Med 2020 03 3;22(3):524-537. Epub 2019 Oct 3.

CHU de Rennes, service de génétique clinique, Rennes, France.

Purpose: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.

Methods: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated.

Results: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated.

Conclusions: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0657-0DOI Listing
March 2020

An Unusual Combination of Neurological Manifestations and Sudden Vision Loss in a Child with Familial Hyperphosphatemic Tumoral Calcinosis.

Ann Indian Acad Neurol 2019 Jul-Sep;22(3):327-331

Department of Neurology and Hemato-Oncology, Rainbow Children's Hospital and Birthright, Hyderabad, Telangana, India.

Hyperphosphatemia in the absence of renal failure is an unusual occurrence, particularly in children, but is a common primary feature of familial hyperphosphatemic tumor calcinosis. We report a child with hyperphosphatemia who presented with multiple episodes of neurologic dysfunction involving lower motor neuron facial nerve palsy along with sequential visual loss. He also had an episode of stroke. There was an extensive metastatic calcification of soft tissue and vasculature. Hyperphosphatemia with normal serum alkaline phosphatase, calcium, parathyroid hormone, and renal function was noted. He was managed with hemodialysis and sevelamer (3 months) without much success in reducing serum phosphate level, requiring continuous ambulatory peritoneal dialysis (3 years). Intact fibroblast growth factor 23 () was undetectable, with C-terminal fragments significantly elevated (2575 RU/ml, normal <180 RU/ml). Sequencing demonstrated homozygous c.486C >A (p.N162K) mutation in , confirming the diagnoses of primary deficiency, the first case to be reported from India.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/aian.AIAN_191_18DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6613414PMC
July 2019

HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond.

Brain 2018 11;141(11):3160-3178

Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal.

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awy263DOI Listing
November 2018

Correction: IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

Genet Med 2019 Aug;21(8):1897-1898

APHP, Service de genetique medicale, Necker- Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.

This Article was originally published under Nature Research's License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0327-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608434PMC
August 2019

Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies.

J Clin Invest 2018 12 29;128(12):5368-5373. Epub 2018 Oct 29.

Skeletal Disorders and Mineral Homeostasis Section, and.

Hyperphosphatemic familial tumoral calcinosis (HFTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is an autosomal recessive disorder of ectopic calcification due to deficiency of or resistance to intact fibroblast growth factor 23 (iFGF23). Inactivating mutations in FGF23, N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO (KL) have been reported as causing HFTC/HHS. We present what we believe is the first identified case of autoimmune hyperphosphatemic tumoral calcinosis in an 8-year-old boy. In addition to the classical clinical and biochemical features of hyperphosphatemic tumoral calcinosis, the patient exhibited markedly elevated intact and C-terminal FGF23 levels, suggestive of FGF23 resistance. However, no mutations in FGF23, KL, or FGF receptor 1 (FGFR1) were identified. He subsequently developed type 1 diabetes mellitus, which raised the possibility of an autoimmune cause for hyperphosphatemic tumoral calcinosis. Luciferase immunoprecipitation systems revealed markedly elevated FGF23 autoantibodies without detectable FGFR1 or Klotho autoantibodies. Using an in vitro FGF23 functional assay, we found that the FGF23 autoantibodies in the patient's plasma blocked downstream signaling via the MAPK/ERK signaling pathway in a dose-dependent manner. Thus, this report describes the first case, to our knowledge, of autoimmune hyperphosphatemic tumoral calcinosis with pathogenic autoantibodies targeting FGF23. Identification of this pathophysiology extends the etiologic spectrum of hyperphosphatemic tumoral calcinosis and suggests that immunomodulatory therapy may be an effective treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI122004DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264742PMC
December 2018

IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.

Genet Med 2019 04 12;21(4):837-849. Epub 2018 Sep 12.

APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.

Purpose: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences.

Methods: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms.

Results: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments.

Conclusion: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0268-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752297PMC
April 2019

A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice.

Endocrinology 2017 03;158(3):470-476

Department of Medicine, Indiana University School of Medicine, 1120 West Michigan St, CL459, Indianapolis, IN, USA.

Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2016-1642DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460778PMC
March 2017

Phenotypic and Genotypic Characterization and Treatment of a Cohort With Familial Tumoral Calcinosis/Hyperostosis-Hyperphosphatemia Syndrome.

J Bone Miner Res 2016 10 20;31(10):1845-1854. Epub 2016 Sep 20.

Skeletal Clinical Studies Unit, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.

Familial tumoral calcinosis (FTC)/hyperostosis-hyperphosphatemia syndrome (HHS) is a rare disorder caused by mutations in the genes encoding fibroblast growth factor-23 (FGF23), N-acetylgalactosaminyltransferase 3 (GALNT3), or KLOTHO. The result is functional deficiency of, or resistance to, intact FGF23 (iFGF23), causing hyperphosphatemia, increased renal tubular reabsorption of phosphorus (TRP), elevated or inappropriately normal 1,25-dihydroxyvitamin D (1,25D), ectopic calcifications, and/or diaphyseal hyperostosis. Eight subjects with FTC/HHS were studied and treated. Clinical manifestations varied, even within families, ranging from asymptomatic to large, disabling calcifications. All subjects had hyperphosphatemia, increased TRP, and elevated or inappropriately normal 1,25D. C-terminal FGF23 was markedly elevated whereas iFGF23 was comparatively low, consistent with increased FGF23 cleavage. Radiographs ranged from diaphyseal hyperostosis to massive calcification. Two subjects with severe calcifications also had overwhelming systemic inflammation and elevated C-reactive protein (CRP). GALNT3 mutations were identified in seven subjects; no causative mutation was found in the eighth. Biopsies from four subjects showed ectopic calcification and chronic inflammation, with areas of heterotopic ossification observed in one subject. Treatment with low phosphate diet, phosphate binders, and phosphaturia-inducing therapies was prescribed with variable response. One subject experienced complete resolution of a calcific mass after 13 months of medical treatment. In the two subjects with systemic inflammation, interleukin-1 (IL-1) antagonists significantly decreased CRP levels with resolution of calcinosis cutis and perilesional inflammation in one subject and improvement of overall well-being in both subjects. This cohort expands the phenotype and genotype of FTC/HHS and demonstrates the range of clinical manifestations despite similar biochemical profiles and genetic mutations. Overwhelming systemic inflammation has not been described previously in FTC/HHS; the response to IL-1 antagonists suggests that anti-inflammatory drugs may be useful adjuvants. In addition, this is the first description of heterotopic ossification reported in FTC/HHS, possibly mediated by the adjacent inflammation. © 2016 American Society for Bone and Mineral Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071128PMC
http://dx.doi.org/10.1002/jbmr.2870DOI Listing
October 2016

FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells.

Oncotarget 2015 Aug;6(23):19647-60

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637311PMC
http://dx.doi.org/10.18632/oncotarget.3794DOI Listing
August 2015

Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.

Endocrinology 2014 Oct 22;155(10):3891-8. Epub 2014 Jul 22.

Departments of Medicine (S.I., A.K.G., L.R.P., N.M.S., M.J.E.), Anatomy and Cell Biology (M.R.A.), and Medical and Molecular Genetics (E.L.C., K.E.W., M.J.E), Indiana University School of Medicine, Indianapolis, Indiana 46202.

Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence ((176)RHTR(179)↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus in Galnt3 knockout mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2014-1199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164931PMC
October 2014

Nicotinamide treatment in a murine model of familial tumoral calcinosis reduces serum Fgf23 and raises heart calcium.

Bone 2014 Oct 4;67:139-44. Epub 2014 Jul 4.

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Mutations in the GALNT3 gene result in familial tumoral calcinosis, characterized by persistent hyperphosphatemia and ectopic calcific masses in soft tissues. Since calcific masses often recur after surgical removal, a more permanent solution to the problem is required. Nicotinamide is reported to lower serum phosphate by decreasing sodium-dependent phosphate co-transporters in the gut and kidney. However, its effectiveness in tumoral calcinosis remains unknown. In this study, we investigated nicotinamide as a potential therapy for tumoral calcinosis, using a murine model of the disease-Galnt3 knockout mice. Initially, five different doses of nicotinamide were given to normal heterozygous mice intraperitoneally or orally. Treatment had no effect on serum phosphate levels, but serum levels of a phosphaturic hormone, fibroblast growth factor 23 (Fgf23), decreased in a dose-dependent manner. Subsequently, high-dose nicotinamide (40mM) was tested in Galnt3 knockout mice fed a high phosphate diet. The radiographic data pre- and post-treatment showed that nicotinamide did not reverse the calcification. However, the treatment retarded calcification growth after 4weeks, while in the untreated animals, calcifications increased in size. The therapy did not affect serum phosphate levels, but intact Fgf23 decreased in the treated mice. The treated mice also had increased calcium in the heart. In summary, nicotinamide did not alter serum phosphate levels, likely due to compensatory decrease in Fgf23 to counteract the phosphate lowering effect of nicotinamide. Although increased calcium accumulation in the heart is a concern, the therapy appears to slow down the progression of ectopic calcifications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2014.06.036DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157335PMC
October 2014

SIBLING family genes and bone mineral density: association and allele-specific expression in humans.

Bone 2014 Jul 18;64:166-72. Epub 2014 Apr 18.

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Osteoporosis is a common complex disorder with reduced bone mineral density (BMD) and increased susceptibility to fracture. Peak BMD is one of the primary determinants of osteoporotic fracture risk, and is under substantial genetic control. Extracellular matrix, a major component of the bone, influences BMD by regulating mineral deposition and maintaining cellular activity. It contains several SIBLING family proteins, null mutations of which cause mineralization defects in humans. In this study, we tested 59 single-nucleotide polymorphisms (SNPs) located in the 5 SIBLING family genes (DSPP, DMP1, IBSP, MEPE and SPP1) for association with normal variation in peak BMD in healthy men and women. We measured femoral neck (FN) and lumbar spine (LS) areal BMD by dual energy x-ray absorptiometry (DXA) in 1692 premenopausal European-American women, 512 premenopausal African-American women and 715 European-American men. SNPs were tested for association with FN and LS-BMD in the 3 subsamples. In the European-American women, we observed association (p≤0.005) with LS-BMD for SNPs in DSPP, IBSP and MEPE, and for FN-BMD with SNPs in DMP1 and IBSP. Allele-specific regulation of gene expression (ASE) is an important mechanism in which an allele giving rise to modest influence in transcript abundance might result in a predisposition to disease. To identify whether there was ASE of SIBLING family genes at these SNPs, we examined 52 human bone samples obtained from the femoral neck during surgical hip replacement (27 female, 25 male; 44 European-American and 8 African-American). We observed unidirectional ASE for the IBSP gene, with lower expression of the G allele compared to the A allele for SNP rs17013181. Our data suggest that SNPs within the SIBLING genes may contribute to normal variation of peak BMD. Further studies are necessary to identify the functional variants and to determine the mechanisms underlying the differences in ASE and how these differences relate to the pathophysiology of osteoporosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2014.04.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080809PMC
July 2014

Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis.

J Am Soc Nephrol 2014 Oct 3;25(10):2366-75. Epub 2014 Apr 3.

Endocrine Unit, and

Compound heterozygous and homozygous (comp/hom) mutations in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium (Na(+))-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a disorder characterized by renal phosphate wasting resulting in hypophosphatemia, correspondingly elevated 1,25(OH)2 vitamin D levels, hypercalciuria, and rickets/osteomalacia. Similar, albeit less severe, biochemical changes are observed in heterozygous (het) carriers and indistinguishable from those changes encountered in idiopathic hypercalciuria (IH). Here, we report a review of clinical and laboratory records of 133 individuals from 27 kindreds, including 5 previously unreported HHRH kindreds and two cases with IH, in which known and novel SLC34A3 mutations (c.1357delTTC [p.F453del]; c.G1369A [p.G457S]; c.367delC) were identified. Individuals with mutations affecting both SLC34A3 alleles had a significantly increased risk of kidney stone formation or medullary nephrocalcinosis, namely 46% compared with 6% observed in healthy family members carrying only the wild-type SLC34A3 allele (P=0.005) or 5.64% in the general population (P<0.001). Renal calcifications were also more frequent in het carriers (16%; P=0.003 compared with the general population) and were more likely to occur in comp/hom and het individuals with decreased serum phosphate (odds ratio [OR], 0.75, 95% confidence interval [95% CI], 0.59 to 0.96; P=0.02), decreased tubular reabsorption of phosphate (OR, 0.41; 95% CI, 0.23 to 0.72; P=0.002), and increased serum 1,25(OH)2 vitamin D (OR, 1.22; 95% CI, 1.05 to 1.41; P=0.008). Additional studies are needed to determine whether these biochemical parameters are independent of genotype and can guide therapy to prevent nephrocalcinosis, nephrolithiasis, and potentially, CKD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1681/ASN.2013101085DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4178443PMC
October 2014

High dietary phosphate intake induces development of ectopic calcifications in a murine model of familial tumoral calcinosis.

J Bone Miner Res 2014 Sep;29(9):2017-23

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Familial tumoral calcinosis is characterized by ectopic calcifications due to persistent hyperphosphatemia. The most common genetic cause of the disease is mutations in GALNT3, encoding a glycosyltransferase involved in a posttranslational modification of fibroblast growth factor 23 (FGF23). The Galnt3 knockout mouse we developed was hyperphosphatemic due to low intact Fgf23 levels, but did not develop any apparent calcifications on a standard rodent diet. We therefore tested the hypothesis that a further challenge with a high phosphate diet could induce ectopic calcifications in Galnt3 knockout mice. Mice were fed either normal (0.6%) or high (1.65%) phosphate diet for 20 weeks beginning from weaning at 3 weeks. The high phosphate diet did not affect serum phosphorus concentration. However, regardless of the dietary phosphate contents, serum phosphorus levels were consistently elevated in Galnt3 knockout mice. The mice on the high phosphate diet had slightly low serum calcium, but significantly high alkaline phosphatase, parathyroid hormone (PTH), and calcium in the kidney. Although none of Galnt3 knockout mice on the normal phosphate diet developed calcifications, calcifications appeared in approximately one-half of the mice on the high phosphate diet by 12 weeks. Calcified masses were most often found around the neck and on the back and as large as 9.9 mm in length. These data indicate that dietary phosphate load has major impact on the development of ectopic calcifications in tumoral calcinosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.2242DOI Listing
September 2014

Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models.

Bone 2014 Feb 1;59:66-75. Epub 2013 Nov 1.

Regenerative Medicine Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Piazza Sant'Onofrio 4, 00165 Rome, Italy.

Autosomal dominant osteopetrosis type II (ADO2) is a heritable osteosclerotic disorder dependent on osteoclast impairment. In most patients it results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene, encoding for a 2Cl(-)/1H(+) antiporter. By a knock-in strategy inserting a missense mutation in the Clcn7 gene, our two research groups independently generated mouse models of ADO2 on different genetic backgrounds carrying the homolog of the most frequent heterozygous mutation (p.G213R) in the Clcn7 gene found in humans. Our results demonstrate that the heterozygous model holds true presenting with higher bone mass, increased numbers of poorly resorbing osteoclasts and a lethal phenotype in the homozygous state. Considerable variability is observed in the heterozygous mice according with the mouse background, suggesting that modifier genes could influence the penetrance of the disease gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2013.10.021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889206PMC
February 2014

Intronic deletions in the SLC34A3 gene: a cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria.

Bone 2014 Feb 29;59:53-6. Epub 2013 Oct 29.

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder, characterized by hypophosphatemia, variable degrees of rickets/osteomalacia, and hypercalciuria secondary to increased serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels. HHRH is caused by mutations in the SLC34A3 gene, which encodes sodium-phosphate co-transporter type IIc. A 6-1/2-year-old female presented with a history of nephrolithiasis. Her metabolic evaluation revealed increased 24-hour urine calcium excretion with high serum calcium, low intact parathyroid hormone (PTH), and elevated 1,25(OH)2D. In addition, the patient had low to low-normal serum phosphorus with high urine phosphorus. The patient had normal stature; without rachitic or boney deformities or a history of fractures. Genetic analysis of SLC34A3 revealed the patient to be a compound heterozygote for a novel single base pair deletion in exon 12 (c.1304delG) and 30-base pair deletion in intron 6 (g.1440-1469del). The single-base pair mutation causes a frameshift, which results in premature stop codon. The intronic deletion is likely caused by misalignment of the 4-basepair homologous repeats and results in the truncation of an already small intron to 63bp, which would impair proper RNA splicing of the intron. This is the fourth unique intronic deletion identified in patients with HHRH, suggesting the frequent occurrence of sequence misalignments in SLC34A3 and the importance of screening introns in patients with HHRH.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2013.10.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903128PMC
February 2014

Dosage effect of a Phex mutation in a murine model of X-linked hypophosphatemia.

Calcif Tissue Int 2013 Aug 23;93(2):155-62. Epub 2013 May 23.

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

X-linked hypophosphatemia (XLH) is caused by mutations in the PHEX gene, which increase circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Because XLH is a dominant disease, one mutant allele is sufficient for manifestation of the disease. However, the dosage effect of a PHEX mutation in XLH is not completely understood. To examine the effect of Phex genotypes, we compared serum biochemistries and skeletal measures between all five possible genotypes of a new murine model of XLH (Phex (K496X) or Phex (Jrt) ). Compared to sex-matched littermate controls, all Phex mutant mice had hypophosphatemia, mild hypocalcemia, and increased parathyroid hormone and alkaline phosphatase levels. Furthermore, mutant mice had markedly elevated serum Fgf23 levels due to increased Fgf23 expression and reduced cleavage of Fgf23. Although females with a homozygous Phex mutation were slightly more hypocalcemic and hypophosphatemic than heterozygous females, the two groups had comparable intact Fgf23 levels. Similarly, there was no difference in intact Fgf23 or phosphorus concentrations between hemizygous males and heterozygous females. Compared to heterozygous females, homozygous counterparts were significantly smaller and had shorter femurs with reduced bone mineral density, suggesting the existence of dosage effect in the skeletal phenotype of XLH. However, overall phenotypic trends in regards to mineral ion homeostasis were mostly unaffected by the presence of one or two mutant Phex allele(s). The lack of a gene dosage effect on circulating Fgf23 (and thus phosphorus) levels suggests that a Phex mutation may create the lower set point for extracellular phosphate concentrations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-013-9736-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742319PMC
August 2013

regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions.

Bioinformatics 2012 Jul 18;28(14):1879-86. Epub 2012 May 18.

School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Motivation: One of the fundamental questions in genetics study is to identify functional DNA variants that are responsible to a disease or phenotype of interest. Results from large-scale genetics studies, such as genome-wide association studies (GWAS), and the availability of high-throughput sequencing technologies provide opportunities in identifying causal variants. Despite the technical advances, informatics methodologies need to be developed to prioritize thousands of variants for potential causative effects.

Results: We present regSNPs, an informatics strategy that integrates several established bioinformatics tools, for prioritizing regulatory SNPs, i.e. the SNPs in the promoter regions that potentially affect phenotype through changing transcription of downstream genes. Comparing to existing tools, regSNPs has two distinct features. It considers degenerative features of binding motifs by calculating the differences on the binding affinity caused by the candidate variants and integrates potential phenotypic effects of various transcription factors. When tested by using the disease-causing variants documented in the Human Gene Mutation Database, regSNPs showed mixed performance on various diseases. regSNPs predicted three SNPs that can potentially affect bone density in a region detected in an earlier linkage study. Potential effects of one of the variants were validated using luciferase reporter assay.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bts275DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389767PMC
July 2012

A novel Phex mutation in a new mouse model of hypophosphatemic rickets.

J Cell Biochem 2012 Jul;113(7):2432-41

Centre For Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24115DOI Listing
July 2012

Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

Endocrinology 2011 Dec 18;152(12):4504-13. Epub 2011 Oct 18.

Department of Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, 541 North Clinical Drive, CL 459, Indianapolis, Indiana 46202, USA.

Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2011-1137DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230057PMC
December 2011

A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells.

J Bone Miner Res 2012 Feb;27(2):453-60

Department of Medicine, Division of Endocrinology and Metabolism, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

Mutations in the PHEX gene cause X-linked hypophosphatemia (XLH). Hypophosphatemia in XLH results from increased circulating levels of a phosphaturic hormone, fibroblast growth factor 23 (FGF23), which inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D (calcitriol) synthesis. The current standard therapy for XLH--high-dose phosphate and calcitriol--further increases FGF23 concentrations, suggesting that patients with XLH may have an altered response to extracellular phosphate. To test for the presence of abnormal phosphate responsiveness, we compared serum biochemistries and femoral Fgf23 mRNA expression between wild-type mice, murine models of XLH (Phex(K496X)) and hyperphosphatemic tumoral calcinosis (Galnt3(-/-)), and Galnt3/Phex double-mutant mice. Phex mutant mice had not only increased Fgf23 expression but also reduced proteolytic cleavage of intact Fgf23 protein, resulting in markedly elevated intact Fgf23 levels and consequent hypophosphatemia. In contrast, despite markedly increased Fgf23 expression, Galnt3 knockout mice had significantly high proteolytic cleavage of Fgf23 protein, leading to low intact Fgf23 concentrations and hyperphosphatemia. Galnt3/Phex double-mutant mice had an intermediate biochemical phenotype between wild-type and Phex mutant mice, including slightly elevated intact Fgf23 concentrations with milder hypophosphatemia. Despite the hypophosphatemia, double-mutant mice attempted to reduce serum phosphate back to the level of Phex mutant mice by upregulating Fgf23 expression as much as 24-fold higher than Phex mutant mice. These data suggest that Phex mutations alter the responsiveness of bone cells to extracellular phosphate concentrations and may create a lower set point for "normal" phosphate levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.544DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3288231PMC
February 2012

Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects.

Biochem Biophys Res Commun 2010 Jul 1;398(3):513-8. Epub 2010 Jul 1.

Antibody Research Laboratories, Kyowa Hakko Kirin Co. Ltd., Tokyo 194-8533, Japan.

Background: Alpha-Klotho (alphaKl) regulates mineral metabolism such as calcium ion (Ca(2+)) and inorganic phosphate (Pi) in circulation. Defects in mice result in clinical features resembling disorders found in human aging. Although the importance of transmembrane-type alphaKl has been demonstrated, less is known regarding the physiological importance of soluble-type alphaKl (salphaKl) in circulation.

Objectives: The aims of this study were: (1) to establish a sandwich ELISA system enabling detection of circulating serum salphaKl, and (2) to determine reference values for salphaKl serum levels and relationship to indices of renal function, mineral metabolism, age and sex in healthy subjects.

Results: We successively developed an ELISA to measure serum salphaKl in healthy volunteers (n=142, males 66) of ages (61.1+/-18.5year). The levels (mean+/-SD) in these healthy control adults were as follows: total calcium (Ca; 9.46+/-0.41mg/dL), Pi (3.63+/-0.51mg/dL), blood urea nitrogen (BUN; 15.7+/-4.3mg/dL), creatinine (Cre; 0.69+/-0.14mg/dL), 1,25 dihydroxyvitamin D (1,25(OH)(2)D; 54.8+/-17.7pg/mL), intact parathyroid hormone (iPTH; 49.2+/-20.6pg/mL), calcitonin (26.0+/-12.3pg/mL) and intact fibroblast growth factor (FGF23; 43.8+/-17.6pg/mL). Serum levels of salphaKl ranged from 239 to 1266pg/mL (mean+/-SD; 562+/-146pg/mL) in normal adults. Although salphaKl levels were not modified by gender or indices of mineral metabolism, salphaKl levels were inversely related to Cre and age. However, salphaKl levels in normal children (n=39, males 23, mean+/-SD; 7.1+/-4.8years) were significantly higher (mean+/-SD; 952+/-282pg/mL) than those in adults (mean+/-SD; 562+/-146, P<0.001). A multivariate linear regression analysis including children and adults in this study demonstrated that salphaKl correlated negatively with age and Ca, and positively with Pi. Finally, we measured a serum salphaKl from a patient with severe tumoral calcinosis derived from a homozygous missense mutation of alpha-klotho gene. In this patient, salphaKl level was notably lower than those of age-matched controls.

Conclusion: We established a detection system to measure human serum salphaKl for the first time. Age, Ca and Pi seem to influence serum salphaKl levels in a normal population. This detection system should be an excellent tool for investigating salphaKl functions in mineral metabolism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2010.06.110DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130489PMC
July 2010

Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations.

Am J Med Genet A 2010 Apr;152A(4):896-903

Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

The GALNT3 gene encodes GalNAc-T3, which prevents degradation of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Biallelic mutations in either GALNT3 or FGF23 result in hyperphosphatemic familial tumoral calcinosis or its variant, hyperostosis-hyperphosphatemia syndrome. Tumoral calcinosis is characterized by the presence of ectopic calcifications around major joints, whereas hyperostosis-hyperphosphatemia syndrome is characterized by recurrent long bone lesions with hyperostosis. Here we investigated four patients with hyperphosphatemia and clinical manifestations including tumoral calcinosis and/or hyperostosis-hyperphosphatemia syndrome to determine underlying genetic cause and delineate phenotypic heterogeneity of these disorders. Mutational analysis of FGF23 and GALNT3 in these patients revealed novel homozygous mutations in GALNT3. Although the presence of massive calcifications, cortical hyperostosis, or dental anomalies was not shared by all patients, all had persistent hyperphosphatemia. Three of the patients also had inappropriately normal 1,25-dihyroxyvitamin D [1,25(OH)(2)D] and confirmed low circulating intact FGF23 concentrations. The four novel GALNT3 mutations invariably resulted in hyperphosphatemia as a result of low intact FGF23, but other clinical manifestations were variable. Therefore, tumoral calcinosis and hyperostosis-hyperphosphatemia syndrome represent a continuous spectrum of the same disease caused by increased phosphate levels, rather than two distinct disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.33337DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3392654PMC
April 2010

Replication of previous genome-wide association studies of bone mineral density in premenopausal American women.

J Bone Miner Res 2010 Aug;25(8):1821-9

Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Bone mineral density (BMD) achieved during young adulthood (peak BMD) is one of the major determinants of osteoporotic fracture in later life. Genetic variants associated with BMD have been identified by three recent genome-wide association studies. The most significant single-nucleotide polymorphisms (SNPs) from these studies were genotyped to test whether they were associated with peak BMD in premenopausal American women. Femoral neck and lumbar spine BMD were determined by dual-energy X-ray absorptiometry in two groups of premenopausal women: 1524 white women and 512 black women. In premenopausal white women, two SNPs in the C6orf97/ESR1 region were significantly associated with BMD (p < 4.8 x 10(-4)), with suggestive evidence for CTNNBL1 and LRP5 (p < .01). Evidence of association with one of the two SNPs in the C6orf97/ESR1 region also was observed in premenopausal black women. Furthermore, SNPs in SP7 and a chromosome 4 intergenic region showed suggestive association with BMD in black women. Detailed analyses of additional SNPs in the C6orf97/ESR1 region revealed multiple genomic blocks independently associated with femoral neck and lumbar spine BMD. Findings in the three published genome-wide association studies were replicated in independent samples of premenopausal American women, suggesting that genetic variants in these genes or regions contribute to peak BMD in healthy women in various populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.62DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3153352PMC
August 2010

Genome-wide association study of bone mineral density in premenopausal European-American women and replication in African-American women.

J Clin Endocrinol Metab 2010 Apr 17;95(4):1802-9. Epub 2010 Feb 17.

Departments of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

Context: Several genome-wide association studies (GWAS) have been performed to identify genes contributing to bone mineral density (BMD), typically in samples of elderly women and men.

Objective: The objective of the study was to identify genes contributing to BMD in premenopausal women.

Design: GWAS using the Illumina 610Quad array in premenopausal European-American (EA) women and replication of the top 50 single-nucleotide polymorphisms (SNPs) for two BMD measures in African-American (AA) women.

Subjects: Subjects included 1524 premenopausal EA women aged 20-45 yr from 762 sibships and 669 AA premenopausal women aged 20-44 yr from 383 sibships.

Interventions: There were no interventions.

Main Outcome Measures: BMD was measured at the lumbar spine and femoral neck by dual-energy x-ray absorptiometry. Age- and weight-adjusted BMD values were tested for association with each SNP, with P values determined by permutation.

Results: SNPs in CATSPERB on chromosome 14 provided evidence of association with femoral neck BMD (rs1298989, P = 2.7 x 10(-5); rs1285635, P = 3.0 x 10(-5)) in the EA women, and some supporting evidence was also observed with these SNPs in the AA women (rs1285635, P = 0.003). Genes identified in other BMD GWAS studies, including IBSP and ADAMTS18, were also among the most significant findings in our GWAS.

Conclusions: Evidence of association to several novel loci was detected in a GWAS of premenopausal EA women, and SNPs in one of these loci also provided supporting evidence in a sample of AA women.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2009-1903DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853986PMC
April 2010

Mosaicism in osteopathia striata with cranial sclerosis.

J Clin Endocrinol Metab 2010 Apr 11;95(4):1506-7. Epub 2010 Feb 11.

Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5121, USA.

Context: Osteopathia striata with cranial sclerosis is an X-linked dominant condition caused by mutations in the WTX gene, resulting in linear striations in long bones in combination with cranial sclerosis. This condition is usually lethal in males. OBJECTIVE/PATIENT: Our aim was to determine the underlying genetic cause in a 37-yr-old male with this condition.

Design: DNA sequencing of peripheral blood and hair was performed to identify mutations in WTX. Quantitative PCR was performed to determine gene copy number variation.

Results: DNA sequenced from peripheral blood revealed the presence of two alleles at the 1108th position of the WTX gene. Subsequent DNA sequencing of hair follicles and quantitative PCR confirmed the presence of mosaicism.

Conclusion: A novel mutation (c.1108G>T) found in our patient results in a truncated protein (E370X). Our patient represents the first confirmed case of mosaicism in osteopathia striata with cranial sclerosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2009-2343DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853980PMC
April 2010

Hypophosphatemic rickets with hypercalciuria due to mutation in SLC34A3/type IIc sodium-phosphate cotransporter: presentation as hypercalciuria and nephrolithiasis.

J Clin Endocrinol Metab 2009 Nov 9;94(11):4433-8. Epub 2009 Oct 9.

Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.

Context: Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a metabolic disorder due to homozygous loss-of-function mutations in the SLC34A3 gene encoding the renal type IIc sodium-phosphate cotransporter (NaPi-IIc). The typical presentation is severe rickets and hypophosphatemia, and hypercalciuria is often discovered later or overlooked.

Objective: We sought to determine the genetic basis for severe hypercalciuria and nephrolithiasis/nephrocalcinosis in an adolescent male with elevated serum levels of calcitriol but normal serum levels of calcium and phosphorus.

Design And Setting: We used PCR to analyze the SLC34A3 gene in the proband and members of his family.

Results: The proband was a compound heterozygote for two SLC34A3 missense mutations, a novel c.544C-->T in exon 6 that results in replacement of arginine at position 182 by tryptophan (R182W) and c.575C-->T in exon 7 that results in replacement of serine at position 192 by leucine (S192L). The R182W and S192L alleles were inherited from the mother and father, respectively, both of whom had hypercalciuria. A clinically unaffected brother was heterozygous for S192L.

Conclusion: We report a novel mutation in the SLC34A3 gene in a patient with an unusual presentation of HHRH. This report emphasizes that moderate and severe hypercalciuria can be manifestations of heterozygous or homozygous loss-of-function mutations in the SLC34A3 gene, respectively, providing further evidence for a gene dosage effect in determining the phenotype. HHRH may be an underdiagnosed condition that can masquerade as idiopathic hypercalciuria or osteopenia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2009-1535DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775650PMC
November 2009

Discordance for X-linked hypophosphataemic rickets in identical twin girls.

Horm Res 2009 4;71(4):237-44. Epub 2009 Mar 4.

Institute of Human Genetics, Centre for Life, Newcastle University, Sir James Spence Institute for Child Health, Royal Victoria Infirmary, Newcastle upon Tyne, UK.

Background: We report monozygotic twin girls with a family history consistent with X-linked hypophosphataemic rickets (XLH). One twin had a skeletal and biochemical phenotype consistent with XLH, whilst the second twin appeared normal. Complete non-penetrance in XLH has not been previously reported and our aim was to explore potential reasons for this.

Methods: Serum and urine biochemistry were analysed at regular intervals. Microsatellite analysis was performed to confirm monozygosity and bi-parental inheritance of the X chromosome. The X chromosome inactivation pattern was studied in peripheral blood. Exons of the paternal PHEX and FGF23 genes were sequenced.

Results: Biochemistry was persistently abnormal in the slow-growing twin 1 and normal in twin 2 who has grown normally. Maximal tubular phosphate reabsorption was 0.68 mmol/l in twin 1 and 1.64 mmol/l in twin 2 at 10.8 years of age (normal 1.15-2.58 mmol/l). Microsatellite analysis confirmed monozygosity and the X chromosome inactivation pattern was random. These studies also excluded uniparental isodisomy. The exon sequence of paternal PHEX and FGF23 genes was normal.

Conclusions: Discordant X inactivation is a well-recognised phenomenon in identical twins, and we suspect that non-random expression of the normal PHEX gene in critical tissues is the most likely explanation for non-penetrance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000201113DOI Listing
June 2009