Publications by authors named "Shih-Jen Hwang"

179 Publications

Proteins as Mediators of the Association Between Diet Quality and Incident Cardiovascular Disease and All-Cause Mortality: The Framingham Heart Study.

J Am Heart Assoc 2021 Sep 6:e021245. Epub 2021 Sep 6.

Nutrition Epidemiology and Data Science Friedman School of Nutrition Science and Policy Tufts University Boston MA.

Background Biological mechanisms underlying the association of a healthy diet with chronic diseases remain unclear. Targeted proteomics may facilitate the understanding of mechanisms linking diet to chronic diseases. Methods and Results We examined 6360 participants (mean age 50 years; 54% women) in the Framingham Heart Study. The associations between diet and 71 cardiovascular disease (CVD)-related proteins were examined using 3 diet quality scores: the Alternate Healthy Eating Index, the modified Mediterranean-style Diet Score, and the modified Dietary Approaches to Stop Hypertension diet score. A mediation analysis was conducted to examine which proteins mediated the associations of diet with incident CVD and all-cause mortality. Thirty of the 71 proteins were associated with at least 1 diet quality score (<0.0007) after adjustment for multiple covariates in all study participants and confirmed by an internal validation analysis. Gene ontology analysis identified inflammation-related pathways such as regulation of cell killing and neuroinflammatory response (Bonferroni corrected <0.05). During a median follow-up of 13 years, we documented 512 deaths and 488 incident CVD events. Higher diet quality scores were associated with lower risk of CVD (≤0.03) and mortality (≤0.004). After adjusting for multiple potential confounders, 4 proteins (B2M [beta-2-microglobulin], GDF15 [growth differentiation factor 15], sICAM1 [soluble intercellular adhesion molecule 1], and UCMGP [uncarboxylated matrix Gla-protein]) mediated the association between at least 1 diet quality score and all-cause mortality (median proportion of mediation ranged from 8.6% to 25.9%). We also observed that GDF15 mediated the association of the Alternate Healthy Eating Index with CVD (median proportion of mediation: 8.6%). Conclusions Diet quality is associated with new-onset CVD and mortality and with circulating CVD-related proteins. Several proteins appear to mediate the association of diet with these outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.121.021245DOI Listing
September 2021

Cardiovascular disease related circulating biomarkers and cancer incidence and mortality: is there an association?

Cardiovasc Res 2021 Sep 1. Epub 2021 Sep 1.

Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA.

Aims: Recent studies suggest an association between cardiovascular disease (CVD) and cancer incidence/mortality, but the pathophysiological mechanisms underlying these associations are unclear. We aimed to examine biomarkers previously associated with CVD and study their association with incident cancer and cancer-related death in a prospective cohort study.

Methods And Results: We used a proteomic platform to measure 71 cardiovascular biomarkers among 5,032 participants in the Framingham Heart Study who were free of cancer at baseline. We used multivariable-adjusted Cox models to examine the association of circulating protein biomarkers with risk of cancer incidence and mortality. To account for multiple testing, we set a 2-sided false discovery rate (FDR Q-value) <0.05.Growth differentiation factor-15 (GDF15; also known as macrophage inhibitory cytokine-1 [MIC1])) was associated with increased risk of incident cancer (hazards ratio [HR] per 1 standard deviation increment 1.31, 95% CI 1.17-1.47), incident gastrointestinal cancer (HR 1.85, 95% CI 1.37-2.50), incident colorectal cancer (HR 1.94, 95% CI 1.29-2.91) and cancer-related death (HR 2.15, 95% CI 1.72-2.70). Stromal cell-derived factor-1 (SFD1) showed an inverse association with cancer-related death (HR 0.75, 95% CI 0.65-0.86). Fibroblast growth factor-23 (FGF23) showed an association with colorectal cancer (HR 1.55, 95% CI 1.20-2.00), and granulin (GRN) was associated with hematologic cancer (HR 1.61, 95% CI 1.30-1.99). Other circulating biomarkers of inflammation, immune activation, metabolism, and fibrosis showed suggestive associations with future cancer diagnosis.

Conclusion: We observed several significant associations between circulating CVD biomarkers and cancer, supporting the idea that shared biological pathways underlie both diseases. Further investigations of specific mechanisms that lead to both CVD and cancer are warranted.

Translational Perspective: In our prospective cohort study, baseline levels of biomarkers previously associated with CVD were found to be associated with future development of cancer. In particular, GDF15 was associated with increased risk of cancer incidence and mortality, including gastrointestinal and colorectal cancers; SDF1 was inversely associated with cancer-related death, and FGF23 and GRN were associated with increased risk of colorectal and hematologic cancers, respectively. Other biomarkers of inflammation, immune activation, metabolism, and fibrosis showed suggestive associations. These results suggest potential shared biological pathways that underlie both development of cancer and CVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvab282DOI Listing
September 2021

Epigenetic Age Acceleration Reflects Long-Term Cardiovascular Health.

Circ Res 2021 Aug 25. Epub 2021 Aug 25.

Preventive Medicine, Northwestern University Feinberg School of Medicine, UNITED STATES.

Epigenetic aging is a novel measure of biological age, reflecting exposures and disease risks independent of chronological age. It may serve as a useful biomarker of cardiovascular health (CVH) and/or cardiovascular disease (CVD) risk for early detection or prevention. To examine associations between GrimAge acceleration (GrimAA), a measure of epigenetic aging calculated from the residuals of GrimAge regressed on chronological age, and two repeated CVH measures: a full score for the AHA "Life's Simple 7" (diet, smoking, physical activity, BMI, blood pressure, total cholesterol, and glucose) and a clinical CVH score (BMI, blood pressure, cholesterol, and glucose). We used Illumina array DNA methylation data from two prospective cohort studies: The Coronary Artery Risk Development in Young Adults (CARDIA) study and Framingham Heart Study (FHS), to calculate GrimAA and model associations with CVH. CARDIA randomly selected 1,118 participants for assays at Y15 (2000-2001; mean age 40) and/or Y20 (2005-2006); in FHS, 2,106 Offspring participants had DNA methylation measured at exam 8 (2005-2008; mean age 66). We examined multiple cross-sectional and longitudinal models of GrimAA and each CVH score measured at CARDIA Y0-Y20 and FHS exams 7-8. In CARDIA clinical CVH score from Y0-Y20 was associated with Y15 and Y20 GrimAA (β range -0.41 to -0.21 years per 1-point increase in CVH; p range <0.01 to 0.01), as was full score (β range -0.65 to -0.67 years; p<0.01 for all). These findings were validated in FHS (clinical score β range -0.51 to -0.54 years; full score β range -0.76 to -0.83 years; p<0.01 for all). Our data demonstrate that faster GrimAA is associated with the loss of CVH from young age. Epigenetic age may be a useful biomarker of CVD risk and provides biological insight into the role of epigenetic mechanisms linking age-related CVH loss and CVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.121.318965DOI Listing
August 2021

Multiethnic Genome-Wide Association Study of Subclinical Atherosclerosis in Individuals With Type 2 Diabetes.

Circ Genom Precis Med 2021 Aug 9;14(4):e003258. Epub 2021 Jul 9.

Department of Epidemiology (N.F., G.H.), University of North Carolina, Chapel Hill.

Background: Coronary artery calcification (CAC) and carotid artery intima-media thickness (cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk factors for cardiovascular disease. Type 2 diabetes (T2D) is an independent cardiovascular disease risk factor that accelerates atherosclerosis.

Methods: We performed meta-analyses of genome-wide association studies in up to 2500 T2D individuals of European ancestry (EA) and 1590 T2D individuals of African ancestry with or without exclusion of prevalent cardiovascular disease, for CAC measured by cardiac computed tomography, and 3608 individuals of EA and 838 individuals of African ancestry with T2D for cIMT measured by ultrasonography within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.

Results: We replicated 2 loci (rs9369640 and rs9349379 near and rs10757278 near ) for CAC and one locus for cIMT (rs7412 and rs445925 near ) that were previously reported in the general EA populations. We identified one novel CAC locus (rs8000449 near at 13q13.3) at =2.0×10 in EA. No additional loci were identified with the meta-analyses of EA and African ancestry. The expression quantitative trait loci analysis with nearby expressed genes derived from arterial wall and metabolic tissues from the Genotype-Tissue Expression project pinpoints , encoding a matricellular protein involved in bone formation and bone matrix organization, as the potential candidate gene at this locus. In addition, we found significant associations (<3.1×10) for 3 previously reported coronary artery disease loci for these subclinical atherosclerotic phenotypes (rs2891168 near and rs11170820 near for CAC, and rs7412 near for cIMT).

Conclusions: Our results provide potential biological mechanisms that could link CAC and cIMT to increased cardiovascular disease risk in individuals with T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435075PMC
August 2021

An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function.

Chest 2021 Jul 6. Epub 2021 Jul 6.

Framingham Heart Study, Framingham, MA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD. Electronic address:

Background: There are few clinically useful circulating biomarkers of lung function and lung disease. We hypothesized that genome-wide association studies (GWAS) of circulating proteins in conjunction with GWAS of pulmonary traits represents a clinically relevant approach to identifying causal proteins and therapeutically useful insights into mechanisms related to lung function and disease.

Study Question: Can an integrative genomic strategy using GWAS of plasma soluble receptor for advanced glycation end-products (sRAGE) levels in conjunction with GWAS of lung function traits identify putatively causal relations of sRAGE to lung function?

Study Design And Methods: Plasma sRAGE levels were measured in 6,861 Framingham Heart Study participants and GWAS of sRAGE was conducted to identify protein quantitative trait loci (pQTL), including cis-pQTL variants at the sRAGE protein-coding gene locus (AGER). We integrated sRAGE pQTL variants with variants from GWAS of lung traits. Colocalization of sRAGE pQTL variants with lung trait GWAS variants was conducted, and Mendelian randomization was performed using sRAGE cis-pQTL variants to infer causality of sRAGE for pulmonary traits. Cross-sectional and longitudinal protein-trait association analyses were conducted for sRAGE in relation to lung traits.

Results: Colocalization identified shared genetic signals for sRAGE with lung traits. Mendelian randomization analyses suggested protective causal relations of sRAGE to several pulmonary traits. Protein-trait association analyses demonstrated higher sRAGE levels to be cross-sectionally and longitudinally associated with preserved lung function.

Interpretation: sRAGE is produced by type I alveolar cells, and it acts as a decoy receptor to block the inflammatory cascade. Our integrative genomics approach provides evidence for sRAGE as a causal and protective biomarker of lung function, and the pattern of associations is suggestive of a protective role of sRAGE against restrictive lung physiology. We speculate that targeting the AGER/sRAGE axis may be therapeutically beneficial for the treatment and prevention of inflammation-related lung disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chest.2021.06.053DOI Listing
July 2021

Cardiovascular Biomarkers of Obesity and Overlap With Cardiometabolic Dysfunction.

J Am Heart Assoc 2021 Jul 3;10(14):e020215. Epub 2021 Jul 3.

Cardiology Division Department of Medicine Massachusetts General Hospital Boston MA.

Background Obesity may be associated with a range of cardiometabolic manifestations. We hypothesized that proteomic profiling may provide insights into the biological pathways that contribute to various obesity-associated cardiometabolic traits. We sought to identify proteomic signatures of obesity and examine overlap with related cardiometabolic traits, including abdominal adiposity, insulin resistance, and adipose depots. Methods and Results We measured 71 circulating cardiovascular disease protein biomarkers in 6981 participants (54% women; mean age, 49 years). We examined the associations of obesity, computed tomography measures of adiposity, cardiometabolic traits, and incident metabolic syndrome with biomarkers using multivariable regression models. Of the 71 biomarkers examined, 45 were significantly associated with obesity, of which 32 were positively associated and 13 were negatively associated with obesity (false discovery rate <0.05 for all). There was significant overlap of biomarker profiles of obesity and cardiometabolic traits, but 23 biomarkers, including melanoma cell adhesion molecule (MCAM), growth differentiation factor-15 (GDF15), and lipoprotein(a) (LPA) were unique to metabolic traits only. Using hierarchical clustering, we found that the protein biomarkers clustered along 3 main trait axes: adipose, metabolic, and lipid traits. In longitudinal analyses, 6 biomarkers were significantly associated with incident metabolic syndrome: apolipoprotein B (apoB), insulin-like growth factor-binding protein 2 (IGFBP2), plasma kallikrein (KLKB1), complement C2 (C2), fibrinogen (FBN), and N-terminal pro-B-type natriuretic peptide (NT-proBNP); false discovery rate <0.05 for all. Conclusions We found that the proteomic architecture of obesity overlaps considerably with associated cardiometabolic traits, implying shared pathways. Despite overlap, hierarchical clustering of proteomic profiles identified 3 distinct clusters of cardiometabolic traits: adipose, metabolic, and lipid. Further exploration of these novel protein targets and associated pathways may provide insight into the mechanisms responsible for the progression from obesity to cardiometabolic disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.120.020215DOI Listing
July 2021

Associations of Alcohol Consumption with Cardiovascular Disease-Related Proteomic Biomarkers: The Framingham Heart Study.

J Nutr 2021 Sep;151(9):2574-2582

Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA.

Background: Alcohol consumption and cardiovascular disease (CVD) have a complex relation.

Objectives: We examined the associations between alcohol consumption, fasting plasma proteins, and CVD risk.

Methods: We performed cross-sectional association analyses of alcohol consumption with 71 CVD-related plasma proteins, and also performed prospective association analyses of alcohol consumption and protein concentrations with 3 CVD risk factors (obesity, hypertension, and diabetes) in 6745 Framingham Heart Study (FHS) participants (mean age 49 y; 53% women).

Results: A unit increase in log10 transformed alcohol consumption (g/d) was associated with an increased risk of hypertension (HR = 1.14; 95% CI: 1.04, 1.26; P = 0.007), and decreased risks of obesity (HR = 0.80; 95% CI: 0.71, 0.91; P = 4.6 × 10-4) and diabetes (HR: 0.68; 95% CI: 0.58, 0.80; P = 5.1 × 10-6) in a median of 13-y (interquartile = 7, 14) of follow-up. We identified 43 alcohol-associated proteins in a discovery sample (n = 4348, false discovery rate <0.05) and 20 of them were significant (P <0.05/43) in an independent validation sample (n = 2397). Eighteen of the 20 proteins were inversely associated with alcohol consumption. Four of the 20 proteins demonstrated 3-way associations, as expected, with alcohol consumption and CVD risk factors. For example, a greater concentration of APOA1 was associated with higher alcohol consumption (P = 1.2 × 10-65), and it was also associated with a lower risk of diabetes (P = 8.5 × 10-6). However, several others showed unexpected 3-way associations.

Conclusions: We identified 20 alcohol-associated proteins in 6745 FHS samples. These alcohol-associated proteins demonstrated complex relations with the 3 CVD risk factors. Future studies with integration of more proteomic markers and larger sample size are warranted to unravel the complex relation between alcohol consumption and CVD risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxab186DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8417922PMC
September 2021

Meta-analysis of epigenome-wide association studies of carotid intima-media thickness.

Eur J Epidemiol 2021 Jun 6. Epub 2021 Jun 6.

Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10654-021-00759-zDOI Listing
June 2021

Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19.

medRxiv 2021 Apr 7. Epub 2021 Apr 7.

Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.04.01.21254789DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043484PMC
April 2021

Genome-wide transcriptome study using deep RNA sequencing for myocardial infarction and coronary artery calcification.

BMC Med Genomics 2021 02 10;14(1):45. Epub 2021 Feb 10.

Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA.

Background: Coronary artery calcification (CAC) is a noninvasive measure of coronary atherosclerosis, the proximal pathophysiology underlying most cases of myocardial infarction (MI). We sought to identify expression signatures of early MI and subclinical atherosclerosis in the Framingham Heart Study (FHS). In this study, we conducted paired-end RNA sequencing on whole blood collected from 198 FHS participants (55 with a history of early MI, 72 with high CAC without prior MI, and 71 controls free of elevated CAC levels or history of MI). We applied DESeq2 to identify coding-genes and long intergenic noncoding RNAs (lincRNAs) differentially expressed in MI and high CAC, respectively, compared with the control.

Results: On average, 150 million paired-end reads were obtained for each sample. At the false discovery rate (FDR) < 0.1, we found 68 coding genes and 2 lincRNAs that were differentially expressed in early MI versus controls. Among them, 60 coding genes were detectable and thus tested in an independent RNA-Seq data of 807 individuals from the Rotterdam Study, and 8 genes were supported by p value and direction of the effect. Immune response, lipid metabolic process, and interferon regulatory factor were enriched in these 68 genes. By contrast, only 3 coding genes and 1 lincRNA were differentially expressed in high CAC versus controls. APOD, encoding a component of high-density lipoprotein, was significantly downregulated in both early MI (FDR = 0.007) and high CAC (FDR = 0.01) compared with controls.

Conclusions: We identified transcriptomic signatures of early MI that include differentially expressed protein-coding genes and lincRNAs, suggesting important roles for protein-coding genes and lincRNAs in the pathogenesis of MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12920-020-00838-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874462PMC
February 2021

Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium.

EBioMedicine 2021 Jan 6;63:103157. Epub 2021 Jan 6.

Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.

Background: Genetic factors that influence kidney traits have been understudied for low frequency and ancestry-specific variants.

Methods: We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for estimated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS data and adjusted for age, sex, study, and ethnicity.

Findings: When testing single variants, we identified three novel loci driven by low frequency variants more commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%, P = 6.1 × 10; METTL8, rs116951054, MAF 0.09%, P = 4.5 × 10; and MATK, rs539182790, MAF 0.05%, P = 3.4 × 10). We also replicated two known loci for common variants (rs2461702, MAF=0.49, P = 1.2 × 10, nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 × 10, CDK12). Testing aggregated variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to identify replication samples for ancestry-specific variants.

Interpretation: This study highlights challenges in studying variants influencing kidney traits that are low frequency in populations and more common in non-European ancestry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2020.103157DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804602PMC
January 2021

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

PLoS One 2020 13;15(11):e0230035. Epub 2020 Nov 13.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America.

Background: Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome.

Methods And Results: Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) ≥ 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event.

Conclusion: This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230035PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665790PMC
December 2020

Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets.

EClinicalMedicine 2020 Oct 14;27:100552. Epub 2020 Oct 14.

Department of Public Health, Center for Epidemiologic Research in Asia (CERA) Shiga University of Medical Science (SUMS) Seta-Tsukinowa-cho, Shiga, Japan.

Background: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. "CKD Patch" is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures.

Methods: Utilizing data from 4,143,535 adults from 35 datasets, we developed several "CKD Patches" incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch.

Findings: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Δc-statistic 0.027 [95% CI 0.018-0.036] and 0.010 [0.007-0.013] and categorical net reclassification improvement 0.080 [0.032-0.127] and 0.056 [0.044-0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89-3.40) in very high-risk CKD (e.g., eGFR 30-44 ml/min/1.73m with albuminuria ≥30 mg/g), 1.86 (1.48-2.44) in high-risk CKD (e.g., eGFR 45-59 ml/min/1.73m with albuminuria 30-299 mg/g), and 1.37 (1.14-1.69) in moderate risk CKD (e.g., eGFR 60-89 ml/min/1.73m with albuminuria 30-299 mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37-1.81), 1.24 (1.10-1.54), and 1.21 (0.98-1.46).

Interpretation: The "CKD Patch" can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available.

Funding: US National Kidney Foundation and the NIDDK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eclinm.2020.100552DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599294PMC
October 2020

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

Integrative Genomic Analysis Reveals Four Protein Biomarkers for Platelet Traits.

Circ Res 2020 10 12;127(9):1182-1194. Epub 2020 Aug 12.

The Framingham Heart Study, Framingham, MA (D.H.L., C.Y., J.K., B.A.T.R., S,-J.H., M.-H.C., D.L., A.D.J.).

Rationale: Mean platelet volume (MPV) and platelet count (PLT) are platelet measures that have been linked to cardiovascular disease (CVD) and mortality risk. Identifying protein biomarkers for these measures may yield insights into CVD mechanisms.

Objective: We aimed to identify causal protein biomarkers for MPV and PLT among 71 CVD-related plasma proteins measured in FHS (Framingham Heart Study) participants.

Methods And Results: We conducted integrative analyses of genetic variants associated with PLT/MPV with protein quantitative trait locus variants associated with plasma proteins followed by Mendelian randomization to infer causal relations of proteins for PLT/MPV. We also tested protein-PLT/MPV association in FHS participants. Using induced pluripotent stem cell-derived megakaryocyte clones that produce functional platelets, we conducted RNA-sequencing and analyzed expression differences between low- and high-platelet producing clones. We then performed small interfering RNA gene knockdown experiments targeting genes encoding proteins with putatively causal platelet effects in megakaryocyte clones to examine effects on platelet production. In protein-trait association analyses, ten proteins were associated with MPV and 31 with PLT. Mendelian randomization identified 4 putatively causal proteins for MPV and 4 for PLT. GP-5 (Glycoprotein V), GRN (granulin), and MCAM (melanoma cell adhesion molecule) were associated with PLT, while MPO (myeloperoxidase) showed significant association with MPV in both analyses. RNA-sequencing analysis results were directionally concordant with observed and Mendelian randomization-inferred associations for GP-5, GRN, and MCAM. In siRNA gene knockdown experiments, silencing GP-5, GRN, and MPO decreased PLTs. Genome-wide association study results suggest several of these may be linked to CVD risk.

Conclusions: We identified 4 proteins that are causally linked to PLTs. These proteins may also have roles in the pathogenesis of CVD via a platelet/blood coagulation-based mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.119.316447DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411925PMC
October 2020

Platelet Reactivity in Individuals Over 65 Years Old Is Not Modulated by Age.

Circ Res 2020 07 27;127(3):394-396. Epub 2020 Apr 27.

From the The Blizard Institute, Barts and The London School of Medicine ' Dentistry, Queen Mary University of London (M.V.C., P.C.A., T.D.W.).

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.119.316324DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360093PMC
July 2020

Association of Leukocyte Telomere Length With Mortality Among Adult Participants in 3 Longitudinal Studies.

JAMA Netw Open 2020 02 5;3(2):e200023. Epub 2020 Feb 5.

Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark.

Importance: Leukocyte telomere length (LTL) is a trait associated with risk of cardiovascular disease and cancer, the 2 major disease categories that largely define longevity in the United States. However, it remains unclear whether LTL is associated with the human life span.

Objective: To examine whether LTL is associated with the life span of contemporary humans.

Design, Setting, And Participants: This cohort study included 3259 adults of European ancestry from the Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and Women's Health Initiative (WHI). Leukocyte telomere length was measured in 1992 and 1997 in the CHS, from 1995 to 1998 in the FHS, and from 1993 to 1998 in the WHI. Data analysis was conducted from February 2017 to December 2019.

Main Outcomes And Measures: Death and LTL, measured by Southern blots of the terminal restriction fragments, were the main outcomes. Cause of death was adjudicated by end point committees.

Results: The analyzed sample included 3259 participants (2342 [71.9%] women), with a median (range) age of 69.0 (50.0-98.0) years at blood collection. The median (range) follow-up until death was 10.9 (0.2-23.0) years in CHS, 19.7 (3.4-23.0) years in FHS, and 16.6 (0.5-20.0) years in WHI. During follow-up, there were 1525 deaths (482 [31.6%] of cardiovascular disease; 373 [24.5%] of cancer, and 670 [43.9%] of other or unknown causes). Short LTL, expressed in residual LTL, was associated with increased mortality risk. Overall, the hazard ratio for all-cause mortality for a 1-kilobase decrease in LTL was 1.34 (95% CI, 1.21-1.47). This association was stronger for noncancer causes of death (cardiovascular death: hazard ratio, 1.28; 95% CI, 1.08-1.52; cancer: hazard ratio, 1.13; 95% CI, 0.93-1.36; and other causes: hazard ratio, 1.53; 95% CI, 1.32-1.77).

Conclusions And Relevance: The results of this study indicate that LTL is associated with a natural life span limit in contemporary humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2020.0023DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137690PMC
February 2020

Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans.

Nat Med 2019 11 7;25(11):1739-1747. Epub 2019 Nov 7.

Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.

Type 2 diabetes is characterized by insulin resistance and a gradual loss of pancreatic beta cell mass and function. Currently, there are no therapies proven to prevent beta cell loss and some, namely insulin secretagogues, have been linked to accelerated beta cell failure, thereby limiting their use in type 2 diabetes. The adipokine adipsin/complement factor D controls the alternative complement pathway and generation of complement component C3a, which acts to augment beta cell insulin secretion. In contrast to other insulin secretagogues, we show that chronic replenishment of adipsin in diabetic db/db mice ameliorates hyperglycemia and increases insulin levels while preserving beta cells by blocking dedifferentiation and death. Mechanistically, we find that adipsin/C3a decreases the phosphatase Dusp26; forced expression of Dusp26 in beta cells decreases expression of core beta cell identity genes and sensitizes to cell death. In contrast, pharmacological inhibition of DUSP26 improves hyperglycemia in diabetic mice and protects human islet cells from cell death. Pertaining to human health, we show that higher concentrations of circulating adipsin are associated with a significantly lower risk of developing future diabetes among middle-aged adults after adjusting for body mass index (BMI). Collectively, these data suggest that adipsin/C3a and DUSP26-directed therapies may represent a novel approach to achieve beta cell health to treat and prevent type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-019-0610-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256970PMC
November 2019

HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype.

Nat Genet 2019 11 28;51(11):1580-1587. Epub 2019 Oct 28.

National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA.

Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein-deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0514-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858575PMC
November 2019

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

Nat Genet 2019 10 2;51(10):1459-1474. Epub 2019 Oct 2.

Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0504-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858555PMC
October 2019

Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for cardiovascular disease.

Nat Commun 2019 09 19;10(1):4267. Epub 2019 Sep 19.

The Framingham Heart Study, Framingham, MA, USA.

Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-associated variants from genome-wide association studies (GWAS) may illuminate functional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7 million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Independent replication is performed in 1347 participants from two studies. By linking cis-meQTL variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional regulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA methylation involvement in human diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-12228-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753136PMC
September 2019

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis.

Nat Commun 2019 06 13;10(1):2581. Epub 2019 Jun 13.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10487-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565679PMC
June 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

Leveraging linkage evidence to identify low-frequency and rare variants on 16p13 associated with blood pressure using TOPMed whole genome sequencing data.

Hum Genet 2019 Feb 22;138(2):199-210. Epub 2019 Jan 22.

Division of General Medicine, Columbia University Medical Center, New York, NY, 10032, USA.

In this study, we investigated low-frequency and rare variants associated with blood pressure (BP) by focusing on a linkage region on chromosome 16p13. We used whole genome sequencing (WGS) data obtained through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program on 395 Cleveland Family Study (CFS) European Americans (CFS-EA). By analyzing functional coding variants and non-coding rare variants with CADD score > 10 residing within the chromosomal region in families with linkage evidence, we observed 25 genes with nominal statistical evidence (burden or SKAT p < 0.05). One of the genes is RBFOX1, an evolutionarily conserved RNA-binding protein that regulates tissue-specific alternative splicing that we previously reported to be associated with BP using exome array data in CFS. After follow-up analysis of the 25 genes in ten independent TOPMed studies with individuals of European, African, and East Asian ancestry, and Hispanics (N = 29,988), we identified variants in SLX4 (p = 2.19 × 10) to be significantly associated with BP traits when accounting for multiple testing. We also replicated the associations previously reported for RBFOX1 (p = 0.007). Follow-up analysis with GTEx eQTL data shows SLX4 variants are associated with gene expression in coronary artery, multiple brain tissues, and right atrial appendage of the heart. Our study demonstrates that linkage analysis of family data can provide an efficient approach for detecting rare variants associated with complex traits in WGS data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-019-01975-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404531PMC
February 2019

Evidence for a Causal Role of the SH2B3-βM Axis in Blood Pressure Regulation.

Hypertension 2019 02;73(2):497-503

From the Framingham Heart Study, MA (J.A.K., S.-J.H., T.H., M.M., C.Y., P.C., D.L.).

Genetic variants at SH2B3 are associated with blood pressure and circulating βM (β-2 microglobulin), a well-characterized kidney filtration biomarker. We hypothesize that circulating βM is an independent risk predictor of hypertension and may causally contribute to its development. The study sample consisted of 7 065 Framingham Heart Study participants with measurements of plasma βM. Generalized estimating equations were used to test the association of βM with prevalent and new-onset hypertension. There were 2 145 (30%) cases of prevalent hypertension at baseline and 886 (21%) cases of incident hypertension during 6 years of follow-up. A 1-SD increase in baseline plasma βM was associated with a greater risk of prevalent (odds ratio 1.14, 95% CI 1.05-1.24) and new-onset (odds ratio 1.18, 95% CI 1.07-1.32) hypertension. Individuals within the top βM quartile had a greater risk than the bottom quartile for prevalent (odds ratio 1.29, 95% CI 1.05-1.57) and new-onset (odds ratio 1.59, 95% CI 1.20-2.11) hypertension. These associations remained essentially unchanged in analyses restricted to participants free of albuminuria and chronic kidney disease. Mendelian randomization demonstrated that lower SH2B3 expression is causal for increased circulating βM levels, and in a hypertensive mouse model, knockout of Sh2b3 increased β M gene expression. In a community-based study of healthy individuals, higher plasma βM levels are associated with increased risk of prevalent and incident hypertension independent of chronic kidney disease status. Overlapping genetic signals for hypertension and βM, in conjunction with mouse knockout experiments, suggest that the SH2B3-βM axis plays a causal role in hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.12094DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334659PMC
February 2019

Proteins Altered by Surgical Weight Loss Highlight Biomarkers of Insulin Resistance in the Community.

Arterioscler Thromb Vasc Biol 2019 01;39(1):107-115

Population Sciences Branch of the National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD (S.-J.H., C.Y., D.L.).

Objective- Mechanisms of early and late improvements in cardiovascular risk after bariatric surgery and applicability to larger, at-risk populations remain unclear. We aimed to identify proteins altered after bariatric surgery and their relations to metabolic syndrome and diabetes mellitus. Approach and Results- We identified 19 proteins altered in 32 nonfasting plasma samples from a study of patients undergoing bariatric surgery who were evaluated preoperatively (visit 1) versus both early (visit 2; ≈3 months) and late (visit 3; ≈12 months) postoperative follow-up using predefined protein panels (Olink). Using in silico methods and publicly available gene expression repositories, we found that genes encoding 8 out of 19 proteins had highest expression in liver relative to other assayed tissues, with the top biological and disease processes, including major obesity-related vascular diseases. Of 19 candidate proteins in the surgical cohort, 6 were previously measured in >3000 FHS (Framingham Heart Study) participants (IGFBP [insulin-like growth factor binding protein]-1, IGFBP-2, P-selectin, CD163, LDL (low-density lipoprotein)-receptor, and PAI [plasminogen activator inhibitor]-1). A higher concentration of IGFBP-2 at baseline was associated with a lower risk of incident metabolic syndrome (odds ratio per log-normal unit, 0.45; 95% CI, 0.32-0.64; P=7.7×10) and diabetes mellitus (odds ratio, 0.63; 95% CI, 0.49-0.79; P=0.0001) after multivariable adjustment. Conclusions- Using a directed protein quantification platform (Olink), we identified known and novel proteins altered after surgical weight loss, including IGFBP-2. Future efforts in well-defined obesity intervention settings may further define and validate novel targets for the prevention of vascular disease in obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.118.311928DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309981PMC
January 2019

GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.

Nat Commun 2018 12 3;9(1):5141. Epub 2018 Dec 3.

Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA.

Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07340-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6277418PMC
December 2018
-->