Publications by authors named "Shawn D Wells"

6 Publications

  • Page 1 of 1

Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice.

Nutrients 2022 Feb 20;14(4). Epub 2022 Feb 20.

Radiant Research Services Pvt. Ltd., Bangalore 560058, India.

Paraxanthine is a natural dietary ingredient and the main metabolite of caffeine in humans. Compared to caffeine, paraxanthine exhibits lower toxicity, lesser anxiogenic properties, stronger locomotor activating effects, greater wake promoting properties, and stronger dopaminergic effects. The purpose of this study was to evaluate the potential beneficial effects of paraxanthine supplementation on muscle mass, strength, and endurance performance in comparison to the control and other ingredients commonly used by athletes: L-theanine, alpha-GPC, and taurine. Male Swiss Albino mice from five groups ( = 8 per group) were orally administered paraxanthine (20.5 mg/kg/day, human equivalence dose (HED) 100 mg), L-theanine (10.28 mg/kg/day, HED 50 mg), alpha-GPC (41.09 mg/kg/day, HED 200 mg), taurine (102.75 mg/kg/day, HED 500 mg), or control (carboxy methyl cellulose) for 4 weeks. Exercise performance was evaluated using forelimb grip strength and treadmill endurance exercise. All animals were subject to treadmill training for 60 min 5 days per week. Blood draws were utilized to analyze lipid profile, liver health, renal function, and nitric oxide levels. Paraxanthine significantly increased forelimb grip strength by 17% ( < 0.001), treadmill exercise performance by 39% ( < 0.001), gastrocnemius and soleus muscle mass by 14% and 41% respectively (both < 0.001), and nitric oxide levels by 100% compared to control ( < 0.001), while reducing triglyceride ( < 0.001), total cholesterol ( < 0.001), LDL ( < 0.05), and increasing HDL ( < 0.001) compared to control, and compared to L-theanine, alpha-GPC, and taurine. Results from this initial investigation indicate that, when compared to the control, L-theanine, alpha-GPC, and taurine, paraxanthine is an effective ingredient for various aspects of sports performance and may enhance cardiovascular health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu14040893DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8875973PMC
February 2022

Dose-Response of Paraxanthine on Cognitive Function: A Double Blind, Placebo Controlled, Crossover Trial.

Nutrients 2021 Dec 15;13(12). Epub 2021 Dec 15.

Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.

Paraxanthine (PXN) is a metabolite of caffeine that has recently been reported to enhance cognition at a dose of 200 mg.

Objective: To determine the acute and short-term (7-day) effects of varying doses of PXN on cognitive function and side effects.

Methods: In a double blind, placebo-controlled, crossover, and counterbalanced manner, 12 healthy male and female volunteers (22.7 ± 4 years, 165 ± 7 cm, 66.5 ± 11 kg, 24.4 ± 3 kg/m) ingested 200 mg of a placebo (PLA), 50 mg of PXN (ENFINITY™, Ingenious Ingredients, L.P.) + 150 mg PLA, 100 mg PXN + 100 mg PLA, or 200 mg of PXN. With each treatment experiment, participants completed side effect questionnaires and donated a fasting blood sample. Participants then performed a series of tests assessing cognition, executive function, memory, and reaction time. Participants then ingested one capsule of PLA or PXN treatments. Participants then completed side effects and cognitive function tests after 1, 2, 3, 4, 5, and 6 h of treatment ingestion. Participants continued ingesting one dose of the assigned treatment daily for 6-days and returned to the lab on day 7 to donate a fasting blood sample, assess side effects, and perform cognitive function tests. Participants repeated the experiment while ingesting remaining treatments in a counterbalanced manner after at least a 7-day washout period until all treatments were assessed.

Results: The Sternberg Task Test (STT) 4-Letter Length Present Reaction Time tended to differ among groups ( = 0.06). Assessment of mean changes from baseline with 95% CI's revealed several significant differences among treatments in Berg-Wisconsin Card Sorting Correct Responses, Preservative Errors (PEBL), and Preservative Errors (PAR Rules). There was also evidence of significant differences among treatments in the Go/No-Go Task tests in Mean Accuracy as well as several time points of increasing complexity among STT variables. Finally, there was evidence from Psychomotor Vigilance Task Test assessment that response time improved over the series of 20 trials assessed as well as during the 6-h experiment in the PXN treatment. Acute and short-term benefits compared to PLA were seen with each dose studied but more consistent effects appeared to be at 100 mg and 200 mg doses. No significant differences were observed among treatments in clinical chemistry panels or the frequency or severity of reported side effects. Results provide evidence that acute ingestion of 100 mg and 200 mg of PXN may affect some measures of cognition, memory, reasoning, and response time as well as help sustain attention. Additionally, that acute and daily ingestion of PXN for 7 days is not associated with any clinically significant side effects.

Conclusions: PXN may serve as an effective nootropic agent at doses as low as 50 mg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13124478DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708375PMC
December 2021

Acute Paraxanthine Ingestion Improves Cognition and Short-Term Memory and Helps Sustain Attention in a Double-Blind, Placebo-Controlled, Crossover Trial.

Nutrients 2021 Nov 9;13(11). Epub 2021 Nov 9.

Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.

This study examined the effects of acute paraxanthine (PXN) ingestion on markers of cognition, executive function, and psychomotor vigilance. In a randomized, double blind, placebo-controlled, crossover, and counterbalanced manner, 13 healthy male and female participants were randomly assigned to consume a placebo (PLA) or 200 mg of PXN (ENFINITY™, Ingenious Ingredients, L.P.). Participants completed stimulant sensitivity and side effect questionnaires and then performed the Berg Wisconsin Card Sorting Test (BCST), the Go/No-Go test (GNG), the Sternberg task test (STT), and the psychomotor vigilance task test (PVTT). Participants then ingested one capsule of PLA or PXN treatment. Participants completed side effect and cognitive function tests after 1, 2, 3, 4, 5, and 6 h after ingestion of the supplement. After 7 days, participants repeated the experiment while consuming the alternative treatment. Data were analyzed by general linear model (GLM) univariate analyses with repeated measures using body mass as a covariate, and by assessing mean and percent changes from baseline with 95% confidence intervals (CIs) expressed as means (LL, UL). PXN decreased BCST errors (PXN -4.7 [-0.2, -9.20], = 0.04; PXN -17.5% [-36.1, 1.0], = 0.06) and perseverative errors (PXN -2.2 [-4.2, -0.2], = 0.03; PXN -32.8% [-64.4, 1.2], = 0.04) at hour 6. GNG analysis revealed some evidence that PXN ingestion better maintained mean accuracy over time and Condition R Round 2 response time (e.g., PXN -25.1 [-52.2, 1.9] ms, = 0.07 faster than PLA at 1 h), suggesting better sustained attention. PXN ingestion improved STT two-letter length absent and present reaction times over time as well as improving six-letter length absent reaction time after 2 h (PXN -86.5 ms [-165, -7.2], = 0.03; PXN -9.0% [-18.1, 0.2], = 0.05), suggesting that PXN enhanced the ability to store and retrieve random information of increasing complexity from short-term memory. A moderate treatment x time effect size (η = 0.08) was observed in PVTT, where PXN sustained vigilance during Trial 2 after 2 h (PXN 840 ms [103, 1576], = 0.03) and 4 h (PXN 1466 ms [579, 2353], = 0.002) compared to PL. As testing progressed, the response time improved during the 20 trials and over the course of the 6 h experiment in the PXN treatment, whereas it significantly increased in the PL group. The results suggest that acute PXN ingestion (200 mg) may affect some measures of short-term memory, reasoning, and response time to cognitive challenges and help sustain attention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13113980DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622427PMC
November 2021

The athletic gut microbiota.

J Int Soc Sports Nutr 2020 May 12;17(1):24. Epub 2020 May 12.

Exercise and Sport Science, Nova Southeastern University, Davie, FL, USA.

The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors, such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power, aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing, and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the role of influencing athletic performance is of considerable interest to athletes who work to improve their results in competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond athletics as understanding optimal fitness has applications for overall health and wellness in larger communities. Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more "health-associated" gut microbiota. Such features include a higher abundance of health-promoting bacterial species, increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12970-020-00353-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218537PMC
May 2020

International Society of Sports Nutrition Position Stand: Probiotics.

J Int Soc Sports Nutr 2019 Dec 21;16(1):62. Epub 2019 Dec 21.

Exercise and Sport Science, Nova Southeastern University, Davie, FL, USA.

Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12970-019-0329-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6925426PMC
December 2019

International Society of Sports Nutrition Position Stand: protein and exercise.

J Int Soc Sports Nutr 2017 20;14:20. Epub 2017 Jun 20.

Department of Health and Human Performance, Nova Southeastern University, Davie, FL USA.

The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. Different types and quality of protein can affect amino acid bioavailability following protein supplementation. Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. Pre-sleep casein protein intake (30-40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12970-017-0177-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5477153PMC
November 2017
-->