Publications by authors named "Shaunik Sharma"

15 Publications

  • Page 1 of 1

Structure-based phylogeny identifies Avoralstat as a TMPRSS2 inhibitor that prevents SARS-CoV-2 infection in mice.

J Clin Invest 2021 Apr 12. Epub 2021 Apr 12.

Department of Ophthalmology, Stanford University, Palo Alto, United States of America.

Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS-CoV-2 viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2. We created a structure-based phylogenetic computational tool named 3DPhyloFold to systematically identify structurally similar serine proteases with known therapeutic inhibitors and demonstrated effective inhibition of SARS-CoV-2 infection in vitro and in vivo. Several candidate compounds, Avoralstat, PCI-27483, Antipain, and Soybean-Trypsin-Inhibitor, inhibited TMPRSS2 in biochemical and cell infection assays. Avoralstat, a clinically tested Kallikrein-related B1 inhibitor, inhibited SARS-CoV-2 entry and replication in human airway epithelial cells. In an in vivo proof of principle, Avoralstat significantly reduced lung tissue titers and mitigated weight-loss when administered prophylactically to SARS-CoV-2 susceptible mice indicating its potential to be repositioned for COVID-19 prophylaxis in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI147973DOI Listing
April 2021

Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy.

Front Mol Neurosci 2021 23;14:612073. Epub 2021 Feb 23.

Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States.

Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain. These pathological changes, over the course of time, contribute to conditions like Alzheimer disease, dementia, anxiety disorders, and post-traumatic epilepsy (PTE). PTE is one of the most common, devastating complications of TBI; and of those affected by a severe TBI, more than 50% develop PTE. The etiopathology and mechanisms of PTE are either unknown or poorly understood, which makes treatment challenging. Although anti-epileptic drugs (AEDs) are used as preventive strategies to manage TBI, control acute seizures and prevent development of PTE, their efficacy in PTE remains controversial. In this review, we discuss novel mechanisms and risk factors underlying PTE. We also discuss dysfunctions of neurovascular unit, cell-specific neuroinflammatory mediators and immune response factors that are vital for epileptogenesis after TBI. Finally, we describe current and novel treatments and management strategies for preventing PTE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnmol.2021.612073DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940684PMC
February 2021

Sex as a biological variable in the rat model of diisopropylfluorophosphate-induced long-term neurotoxicity.

Ann N Y Acad Sci 2020 11 23;1479(1):44-64. Epub 2020 Feb 23.

Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa.

Sex differences in response to neurotoxicant exposure that initiates epileptogenesis are understudied. We used telemetry-implanted male and female adult rats exposed to an organophosphate (OP) neurotoxicant, diisopropylflourophosphate (DFP), to test sex differences in the severity of status epilepticus (SE) and the development of spontaneous recurrent seizures (SRS). Females had significantly less severe SE and decreased epileptiform spikes compared with males, although females received a higher dose of DFP than males. The estrous stages had no impact on seizure susceptibility, but rats with severe SE had a significantly prolonged diestrus. A previously demonstrated disease-modifying agent, an inducible nitric oxide synthase inhibitor, 1400W, was tested in both sexes. None of the eight males treated with 1400W developed convulsive SRS during 4 weeks post-DFP exposure, while two of seven females developed convulsive SRS. Concerning gliosis and neurodegeneration, there were region-specific differences in the interaction between sex and SE severity. As SE severity influences epileptogenesis, and as females had significantly less severe SE, sex as a biological variable should be factored into the design of future OP nerve agent experiments while evaluating neurotoxicity and optimizing potential disease-modifying agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.14315DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483197PMC
November 2020

Diapocynin, an NADPH oxidase inhibitor, counteracts diisopropylfluorophosphate-induced long-term neurotoxicity in the rat model.

Ann N Y Acad Sci 2020 11 10;1479(1):75-93. Epub 2020 Feb 10.

Neuroscience Graduate Program, Iowa State University, Ames, Iowa.

Organophosphate (OP) nerve agents are a threat to both the military and civilians. OP exposure causes cholinergic crisis and status epilepticus (SE) because of irreversible inhibition of acetylcholinesterase that can be life-threatening if left untreated. OP survivors develop long-term morbidity, such as cognitive impairment and motor dysfunction, because of oxidative stress and progressive neuroinflammation and neurodegeneration, which act as disease promoters. Current medical countermeasures (MCMs) do not mitigate these pathologies. Therefore, our goal was to target these disease promoters using diapocynin (DPO), an NADPH oxidase inhibitor, in addition to MCMs, in a rat diisopropylfluorophosphate (DFP) model. The DFP-intoxicated rats were treated with DPO (300 mg/kg, oral, six doses, 12-h intervals) or vehicle 2 h following behavioral SE termination with diazepam. The DPO treatment significantly rescued DFP-induced motor impairment and attenuated epileptiform spiking during the first 72 h after DFP exposure in severely seizing rats despite no difference in epileptiform spike rate between the vehicle and DPO groups in mild SE rats. DPO significantly reduced DFP-induced reactive astrogliosis, neurodegeneration, GP91 , glutathiolated protein, serum nitrite, and proinflammatory cytokines and chemokines, such as interleukins (ILs) IL-1α, IL-6, IL-2, IL-17A, leptin, and IP-10, in the hippocampus. Collectively, these data support a neuroprotective role of DPO in an OP-induced neurotoxicity model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.14314DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415478PMC
November 2020

Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model.

Neurobiol Dis 2020 01 30;133:104443. Epub 2019 Mar 30.

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States. Electronic address:

Chemical nerve agents (CNA) are increasingly becoming a threat to both civilians and military personnel. CNA-induced acute effects on the nervous system have been known for some time and the long-term consequences are beginning to emerge. In this study, we used diisopropylfluorophosphate (DFP), a seizurogenic CNA to investigate the long-term impact of its acute exposure on the brain and its mitigation by an inducible nitric oxide synthase (iNOS) inhibitor, 1400W as a neuroprotectant in the rat model. Several experimental studies have demonstrated that DFP-induced seizures and/or status epilepticus (SE) causes permanent brain injury, even after the countermeasure medication (atropine, oxime, and diazepam). In the present study, DFP-induced SE caused a significant increase in iNOS and 3-nitrotyrosine (3-NT) at 24 h, 48 h, 7d, and persisted for a long-term (12 weeks post-exposure), which led to the hypothesis that iNOS is a potential therapeutic target in DFP-induced brain injury. To test the hypothesis, we administered 1400W (20 mg/kg, i.m.) or the vehicle twice daily for the first three days of post-exposure. 1400W significantly reduced DFP-induced iNOS and 3-NT upregulation in the hippocampus and piriform cortex, and the serum nitrite levels at 24 h post-exposure. 1400W also prevented DFP-induced mortality in <24 h. The brain immunohistochemistry (IHC) at 7d post-exposure revealed a significant reduction in gliosis and neurodegeneration (NeuN+ FJB positive cells) in the 1400W-treated group. 1400W, in contrast to the vehicle, caused a significant reduction in the epileptiform spiking and spontaneous recurrent seizures (SRS) during 12 weeks of continuous video-EEG study. IHC of brain sections from the same animals revealed a significant reduction in reactive gliosis (both microgliosis and astrogliosis) and neurodegeneration across various brain regions in the 1400W-treated group when compared to the vehicle-treated group. A multiplex assay from hippocampal lysates at 6 weeks post-exposure showed a significant increase in several key pro-inflammatory cytokines/chemokines such as IL-1α, TNFα, IL-1β, IL-2, IL-6, IL-12, IL-17a, MCP-1, LIX, and Eotaxin, and a growth factor, VEGF in the vehicle-treated animals. 1400W significantly suppressed IL-1α, TNFα, IL-2, IL-12, and MCP-1 levels. It also suppressed DFP-induced serum nitrite levels at 6 weeks post-exposure. In the Morris water maze, the vehicle-treated animals spent significantly less time in the target quadrant in a probe trial at 9d post-exposure compared to their time spent in the same quadrant 11 days previously (i.e., 2 days prior to DFP exposure). Such a difference was not observed in the 1400W and control groups. However, learning and short-term memory were unaffected when tested at 10-16d and 28-34d post-exposure. Accelerated rotarod, horizontal bar test, and the forced swim test revealed no significant changes between groups. Overall, the findings from this study suggest that 1400W may be considered as a potential therapeutic agent as a follow-on therapy for CNA exposure, after controlling the acute symptoms, to prevent mortality and some of the long-term neurotoxicity parameters such as epileptiform spiking, SRS, neurodegeneration, reactive gliosis in some brain regions, and certain key proinflammatory cytokines and chemokine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2019.03.031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6768773PMC
January 2020

Status Epilepticus: Behavioral and Electroencephalography Seizure Correlates in Kainate Experimental Models.

Front Neurol 2018 23;9. Epub 2018 Jan 23.

Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.

Various etiological factors, such as head injury, chemical intoxication, tumors, and gene mutation, can induce epileptogenesis. In animal models, (SE) triggers epileptogenesis. In humans, convulsive SE for >30 min can be a life-threatening medical emergency. The duration and severity of convulsive SE are highly variable in chemoconvulsant animal models. A continuous video-electroencephalography (EEG) recording, and/or diligent direct observation, facilitates quantification of exact duration of different stages of convulsive seizures (Racine stages 3-5) to determine the severity of SE. A continuous convulsive SE for >30 min usually causes high mortality in some rodents and results in widespread brain damage in the surviving animals, in spite of treating with antiepileptic drugs (AEDs). AEDs control behavioral seizures but not EEG seizures. The severity of initial SE impacts epileptogenesis and cognitive function; therefore, quantitative assessment of behavioral SE and EEG in animal models will help to understand the impact of SE severity on epileptogenesis. There are several excellent reviews on experimental models of seizure/SE/epilepsy. This review focusses on the comparison of induction and characterization of behavioral SE and EEG correlates in mice and rats induced by kainate. We also discuss the advantages of repeated low dose of kainate (i.p. route), which minimizes variability in the initial SE severity between animals and reduces mortality rate. A refined approach to induce SE with kainate also addresses the two of the 3Rs (i.e., refinement and reduction), the guiding principles for ethical and scientific standpoint of animal research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fneur.2018.00007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787145PMC
January 2018

Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy.

J Neurosci Res 2019 11 12;97(11):1363-1377. Epub 2017 Dec 12.

Epilepsy Research Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa.

Epileptogenesis is the process of developing an epileptic condition and/or its progression once it is established. The molecules that initiate, promote, and propagate remarkable changes in the brain during epileptogenesis are emerging as targets for prevention/treatment of epilepsy. Epileptogenesis is a continuous process that follows immediately after status epilepticus (SE) in animal models of acquired temporal lobe epilepsy (TLE). Both SE and epileptogenesis are potential therapeutic targets for the discovery of anticonvulsants and antiepileptogenic or disease-modifying agents. For translational studies, SE targets are appropriate for screening anticonvulsive drugs prior to their advancement as therapeutic agents, while targets of epileptogenesis are relevant for identification and development of therapeutic agents that can either prevent or modify the disease or its onset. The acute seizure models do not reveal antiepileptogenic properties of anticonvulsive drugs. This review highlights the important components of epileptogenesis and the long-term impact of intervening one of these components, nitric oxide (NO), in rat and mouse kainate models of TLE. NO is a putative pleotropic gaseous neurotransmitter and an important contributor of nitro-oxidative stress that coexists with neuroinflammation and epileptogenesis. The long-term impact of inhibiting the glial source of NO during early epileptogenesis in the rat model of TLE is reviewed. The importance of sex as a biological variable in disease modification strategies in epilepsy is also briefly discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.24205DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035106PMC
November 2019

Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy.

Neurobiol Dis 2018 02 29;110:102-121. Epub 2017 Nov 29.

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA. Electronic address:

Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures. Saracatinib pretreatment dampened SE severity and completely prevented mortality. We further utilized fyn and fyn mice (wildtype control for the fyn mice on same genetic background), and the rat kainate model, treated with saracatinib post-SE, to validate the role of Fyn/SFK in SE and epileptogenesis. We observed significant reduction in SE severity, epileptiform spikes, and electrographic non-convulsive seizures in fyn mice when compared to fyn mice. Interestingly, significant reductions in phosphorylated pSrc-416 and PKCδ (pPKCδ-507) and naive PKCδ were observed in fyn mice as compared to fyn mice suggesting that PKCδ signaling is a downstream mediator of Fyn in SE and epileptogenesis. Notably, fyn mice also showed a reduction in key proinflammatory mediators TNF-α, IL-1β, and iNOS mRNA expression; serum IL-6 and IL-12 levels; and nitro-oxidative stress markers such as 4-HNE, gp91, and 3-NT in the hippocampus. Immunohistochemistry revealed a significant increase in reactive microgliosis and neurodegeneration in the hippocampus and hilus of dentate gyrus in fyn mice in contrast to fyn mice. Interestingly, we did not observe upregulation of Fyn in pyramidal neurons of the hippocampus during post-SE in fyn mice, but it was upregulated in hilar neurons of the dentate gyrus when compared to naïve control. In reactive microglia, both Fyn and PKCδ were persistently upregulated during post-SE suggesting that Fyn-PKCδ may drive neuroinflammation during epileptogenesis. Since disabling the Fyn kinase prior to SE, either by treating with saracatinib or fyn gene knockout, suppressed seizures and the subsequent epileptogenic events, we further tested whether Fyn/SFK inhibition during post-SE modifies epileptogenesis. Telemetry-implanted, SE-induced, rats were treated with saracatinib and continuously monitored for a month. At 2h post-diazepam, the saracatinib (25mg/kg) or the vehicle was administered orally and repeated twice daily for first three days followed by a single dose/day for the next four days. The saracatinib post-treatment prevented epileptogenesis in >50% of the rats and significantly reduced spontaneous seizures and epileptiform spikes in the rest (one animal did not respond) when compared to the vehicle treated group, which had >24 seizures in a month. Collectively, the findings suggest that Fyn/SFK is a potential mediator of epileptogenesis and a therapeutic target to prevent/treat seizures and epileptogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2017.11.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753797PMC
February 2018

1400W, a highly selective inducible nitric oxide synthase inhibitor is a potential disease modifier in the rat kainate model of temporal lobe epilepsy.

Neurobiol Dis 2016 09 18;93:184-200. Epub 2016 May 18.

Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50010, USA.

Status epilepticus (SE) initiates epileptogenesis to transform normal brain to epileptic state which is characterized by spontaneous recurrent seizures (SRS). Prior to SRS, progressive changes occur in the brain soon after SE, for example, loss of blood-brain barrier (BBB) integrity, neuronal hyper-excitability (epileptiform spiking), neuroinflammation [reactive gliosis, high levels of reactive oxygen/nitrogen species (ROS/RNS)], neurodegeneration and synaptic re-organization. Our hypothesis was that modification of early epileptogenic events will alter the course of disease development and its progression. We tested the hypothesis in the rat kainate model of chronic epilepsy using a novel disease modifying drug, 1400W, a highly selective inhibitor of inducible nitric oxide synthase (iNOS/NOS-II). In an in vitro mouse brain slice model, using a multi-electrode array system, co-application of 1400W with kainate significantly suppressed kainate-induced epileptiform spiking. In the rats, in vivo, 4h after the induction of SE with kainate, 1400W (20mg/kg, i.p.) was administered twice daily for three days to target early events of epileptogenesis. The rats were subjected to continuous (24/7) video-EEG monitoring, remotely, for six months from epidurally implanted cortical electrodes. The 1400W treatment significantly reduced the epileptiform spike rate during the first 12-74h post-SE, which resulted in >90% reduction in SRS in long-term during the six month period when compared to the vehicle-treated control group (257±113 versus 19±10 episodes). Immunohistochemistry (IHC) of brain sections at seven days and six months revealed a significant reduction in; reactive astrogliosis and microgliosis (M1 type), extravascular serum albumin (a marker for BBB leakage) and neurodegeneration in the hippocampus, amygdala and entorhinal cortex in the 1400W-treated rats when compared to the vehicle control. In the seven day group, hippocampal Western blots revealed downregulation of inwardly-rectifying potassium (Kir 4.1) channels and glutamate transporter-1 (GLT-1) levels in the vehicle group, and 1400W treatment partially reversed Kir 4.1 levels, however, GLT-1 levels were unaffected. In the six month group, a significant reduction in mossy fiber staining intensity in the inner molecular layer of the dentate gyrus was observed in the 1400W-treated group. Overall these findings demonstrate that 1400W, by reducing the epileptiform spike rate during the first three days of post-insult, potentially modifies epileptogenesis and the severity of chronic epilepsy in the rat kainate model of TLE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2016.05.013DOI Listing
September 2016

Immediate epileptogenesis: Impact on brain in C57BL/6J mouse kainate model.

Front Biosci (Elite Ed) 2016 06 1;8:390-411. Epub 2016 Jun 1.

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames IA 50011-1250, USA,

We have recently demonstrated immediate epileptogenesis in the C57BL/6J mouse, the strain that is resistant to kainate-induced neurotoxicity. By using a repeated low dose of kainate, we produced mild and severe status epilepticus (SE) models. In the present study, we demonstrate the impact of mild and severe SE, and spontaneous convulsive/nonconvulsive seizures (CS/NCS) on structure and function of the hippocampus, entorhinal cortex, and amygdala at 7, 14 and 28 day post-SE. Immunohistochemistry (IHC) of brain sections confirmed reactive astrogliosis and microgliosis, neurodegeneration, and increased neurogenesis in both groups. The epileptiform spike rate was higher in the severe group during first 12 days, but they decreased thereafter. Morris water maze test confirmed cognitive deficit in both mild and severe groups at 12d post-SE. However, MRI and IHC at 18 weeks did not reveal any changes in the hippocampus. These findings suggest that in C57BL/6J mice, immediate spontaneous CS could be responsible for early brain pathology or vice versa, however, the persistent spontaneous NCS for a long-term had no impact on the brain structure in both groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2741/e775DOI Listing
June 2016

Off-Target drug effects resulting in altered gene expression events with epigenetic and "Quasi-Epigenetic" origins.

Pharmacol Res 2016 05 26;107:229-233. Epub 2016 Mar 26.

Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States. Electronic address:

This review synthesizes examples of pharmacological agents who have off-target effects of an epigenetic nature. We expand upon the paradigm of epigenetics to include "quasi-epigenetic" mechanisms. Quasi-epigenetics includes mechanisms of drugs acting upstream of epigenetic machinery or may themselves impact transcription factor regulation on a more global scale. We explore these avenues with four examples of conventional pharmaceuticals and their unintended, but not necessarily adverse, biological effects. The quasi-epigenetic drugs identified in this review include the use of beta-lactam antibiotics to alter glutamate receptor activity and the action of cyclosporine on multiple transcription factors. In addition, we report on more canonical epigenome changes associated with pharmacological agents such as lithium impacting autophagy of aberrant proteins, and opioid drugs whose chronic use increases the expression of genes associated with addictive phenotypes. By expanding our appreciation of transcriptomic regulation and the effects these drugs have on the epigenome, it is possible to enhance therapeutic applications by exploiting off-target effects and even repurposing established pharmaceuticals. That is, exploration of "pharmacoepigenetic" mechanisms can expand the breadth of the useful activity of a drug beyond the traditional drug targets such as receptors and enzymes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2016.03.028DOI Listing
May 2016

Immediate Epileptogenesis after Kainate-Induced Status Epilepticus in C57BL/6J Mice: Evidence from Long Term Continuous Video-EEG Telemetry.

PLoS One 2015 10;10(7):e0131705. Epub 2015 Jul 10.

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames IA 50011-1250, United States of America.

The C57BL/6J mouse as a model of seizure/epilepsy is challenging due to high mortality and huge variability in response to kainate. We have recently demonstrated that repeated administration of a low dose of kainate by intraperitoneal route can induce severe status epilepticus (SE) with 94% survival rate. In the present study, based on continuous video-EEG recording for 4-18 weeks from epidurally implanted electrodes on the cortex, we demonstrate that this method also induces immediate epileptogenesis (<1-5 days post-SE). This finding was based on identification of two types of spontaneous recurrent seizures; behavioral convulsive seizures (CS) and electrographic nonconvulsive seizures (NCS). The identification of the spontaneous CS, stage 3-5 types, was based on the behaviors (video) that were associated with the EEG characteristics (stage 3-5 epileptiform spikes), the power spectrum, and the activity counts. The electrographic NCS identification was based on the stage 1-2 epileptiform spike clusters on the EEG and their associated power spectrum. Severe SE induced immediate epileptogenesis in all the mice. The maximum numbers of spontaneous CS were observed during the first 4-6 weeks of the SE and they decreased thereafter. Mild SE also induced immediate epileptogenesis in some mice but the CS were less frequent. In both the severe and the mild SE groups, the spontaneous electrographic NCS persisted throughout the 18 weeks observation period, and therefore this could serve as a chronic model for complex seizures. However, unlike rat kainate models, the C57BL/6J mouse kainate model is a unique regressive CS model of epilepsy. Further studies are required to understand the mechanism of recovery from spontaneous CS in this model, which could reveal novel therapeutic targets for epilepsy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131705PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498886PMC
April 2016

Genetic diseases conferring resistance to infectious diseases.

Genes Dis 2015 Sep 25;2(3):247-254. Epub 2015 Feb 25.

Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, USA.

This review considers available evidence for mechanisms of conferred adaptive advantages in the face of specific infectious diseases. In short, we explore a number of genetic conditions, which carry some benefits in adverse circumstances including exposure to infectious agents. The examples discussed are conditions known to result in resistance to a specific infectious disease, or have been proposed as being associated with resistance to various infectious diseases. These infectious disease-genetic disorder pairings include malaria and hemoglobinopathies, cholera and cystic fibrosis, tuberculosis and Tay-Sachs disease, mycotic abortions and phenylketonuria, infection by enveloped viruses and disorders of glycosylation, infection by filoviruses and Niemann-Pick C1 disease, as well as rabies and myasthenia gravis. We also discuss two genetic conditions that lead to infectious disease hypersusceptibility, although we did not cover the large number of immunologic defects leading to infectious disease hypersusceptibilities. Four of the resistance-associated pairings (malaria/hemogloginopathies, cholera/cystic fibrosis, tuberculosis/Tay-Sachs, and mycotic abortions/phenylketonuria) appear to be a result of selection pressures in geographic regions in which the specific infectious agent is endemic. The other pairings do not appear to be based on selection pressure and instead may be serendipitous. Nonetheless, research investigating these relationships may lead to treatment options for the aforementioned diseases by exploiting established mechanisms between genetically affected cells and infectious organisms. This may prove invaluable as a starting point for research in the case of diseases that currently have no reliably curative treatments, ., HIV, rabies, and Ebola.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gendis.2015.02.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150079PMC
September 2015

Seizure-induced oxidative stress in temporal lobe epilepsy.

Biomed Res Int 2015 20;2015:745613. Epub 2015 Jan 20.

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.

An insult to the brain (such as the first seizure) causes excitotoxicity, neuroinflammation, and production of reactive oxygen/nitrogen species (ROS/RNS). ROS and RNS produced during status epilepticus (SE) overwhelm the mitochondrial natural antioxidant defense mechanism. This leads to mitochondrial dysfunction and damage to the mitochondrial DNA. This in turn affects synthesis of various enzyme complexes that are involved in electron transport chain. Resultant effects that occur during epileptogenesis include lipid peroxidation, reactive gliosis, hippocampal neurodegeneration, reorganization of neural networks, and hypersynchronicity. These factors predispose the brain to spontaneous recurrent seizures (SRS), which ultimately establish into temporal lobe epilepsy (TLE). This review discusses some of these issues. Though antiepileptic drugs (AEDs) are beneficial to control/suppress seizures, their long term usage has been shown to increase ROS/RNS in animal models and human patients. In established TLE, ROS/RNS are shown to be harmful as they can increase the susceptibility to SRS. Further, in this paper, we review briefly the data from animal models and human TLE patients on the adverse effects of antiepileptic medications and the plausible ameliorating effects of antioxidants as an adjunct therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2015/745613DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306378PMC
September 2015

Salmonella as a biological "Trojan horse" for neoplasia: future possibilities including brain cancer.

Med Hypotheses 2014 Sep 16;83(3):343-5. Epub 2014 Jun 16.

Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA 50011, United States. Electronic address:

This manuscript considers available evidence that a specific Salmonella strain could be used as an effective orally-administered option for cancer therapy involving the brain. It has been established that Salmonella preferentially colonizes neoplastic tissue and thrives as a facultative anaerobe in the intra-tumor environment. Although Salmonella accumulates in tumors by passive processes, it is still possible for lipopolysaccharide to cause sepsis and endotoxic shock during the migration of bacteria to the tumor site. An LPS-free version of a recently identified Salmonella isolate may have the capability to circumvent the blood brain barrier and provide a safer method of reaching brain tumors. This isolate merits further research as a "Trojan horse" for future oral biotherapy of brain cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2014.06.009DOI Listing
September 2014