Publications by authors named "Sharon L R Kardia"

287 Publications

Multiethnic Genome-wide Association Study of Subclinical Atherosclerosis in Individuals with Type 2 Diabetes.

Circ Genom Precis Med 2021 Jul 9. Epub 2021 Jul 9.

Department of Epidemiology, University of North Carolina, Chapel Hill, NC.

- Coronary artery calcification (CAC) and carotid artery intima-media thickness (cIMT) are measures of subclinical atherosclerosis in asymptomatic individuals and strong risk factors for cardiovascular disease (CVD). Type 2 diabetes (T2D) is an independent CVD risk factor that accelerates atherosclerosis. - We performed meta-analyses of genome-wide association studies (GWAS) in up to 2,500 T2D individuals of European ancestry (EA) and 1,590 T2D individuals of African ancestry (AA) with or without exclusion of prevalent CVD, for CAC measured by cardiac computed tomography, and 3,608 EA and 838 AA with T2D for cIMT measured by ultrasonography within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. - We replicated two loci (rs9369640 and rs9349379 near and rs10757278 near ) for CAC and one locus for cIMT (rs7412 and rs445925 near ) that were previously reported in the general EA populations. We identified one novel CAC locus (rs8000449 near at 13q13.3) at =2.0×10 in EA. No additional loci were identified with the meta-analyses of EA and AA. The expression QTL analysis with nearby expressed genes derived from arterial wall and metabolic tissues from GTEx pinpoints , encoding a matricellular protein involved in bone formation and bone matrix organization, as the potential candidate gene at this locus. In addition, we found significant associations (<3.1×10) for three previously reported coronary artery disease loci for these subclinical atherosclerotic phenotypes (rs2891168 near and rs11170820 near for CAC, and rs7412 near for cIMT). - Our results provide potential biological mechanisms that could link CAC and cIMT to increased CVD risk in individuals with T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003258DOI Listing
July 2021

Regulations and Norms for Reuse of Residual Clinical Biospecimens and Health Data.

West J Nurs Res 2021 Jul 8:1939459211029296. Epub 2021 Jul 8.

Department of Systems, Populations and Leadership, University of Michigan School of Nursing, Ann Arbor, MI, USA.

Nurse scientists are increasingly interested in conducting secondary research using real world collections of biospecimens and health data. The purposes of this scoping review are to (a) identify federal regulations and norms that bear authority or give guidance over reuse of residual clinical biospecimens and health data, (b) summarize domain experts' interpretations of permissions of such reuse, and (c) summarize key issues for interpreting regulations and norms. Final analysis included 25 manuscripts and 23 regulations and norms. This review illustrates contextual complexity for reusing residual clinical biospecimens and health data, and explores issues such as privacy, confidentiality, and deriving genetic information from biospecimens. Inconsistencies make it difficult to interpret, which regulations or norms apply, or if applicable regulations or norms are congruent. Tools are necessary to support consistent, expert-informed consent processes and downstream reuse of residual clinical biospecimens and health data by nurse scientists.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/01939459211029296DOI Listing
July 2021

Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging.

Genome Biol 2021 Jun 29;22(1):194. Epub 2021 Jun 29.

Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.

Background: Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field.

Results: Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels.

Conclusion: This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-021-02398-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243879PMC
June 2021

Lessons Learned for Identifying and Annotating Permissions in Clinical Consent Forms.

Appl Clin Inform 2021 May 23;12(3):429-435. Epub 2021 Jun 23.

Department of Systems, Populations and Leadership, University of Michigan School of Nursing, Ann Arbor, Michigan, United States.

Background:  The lack of machine-interpretable representations of consent permissions precludes development of tools that act upon permissions across information ecosystems, at scale.

Objectives:  To report the process, results, and lessons learned while annotating permissions in clinical consent forms.

Methods:  We conducted a retrospective analysis of clinical consent forms. We developed an annotation scheme following the MAMA (Model-Annotate-Model-Annotate) cycle and evaluated interannotator agreement (IAA) using observed agreement ( ), weighted ( ), and Krippendorff's .

Results:  The final dataset included 6,399 sentences from 134 clinical consent forms. Complete agreement was achieved for 5,871 sentences, including 211 positively identified and 5,660 negatively identified as permission-sentences across all three annotators (  = 0.944, Krippendorff's  = 0.599). These values reflect moderate to substantial IAA. Although permission-sentences contain a set of common words and structure, disagreements between annotators are largely explained by lexical variability and ambiguity in sentence meaning.

Conclusion:  Our findings point to the complexity of identifying permission-sentences within the clinical consent forms. We present our results in light of lessons learned, which may serve as a launching point for developing tools for automated permission extraction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0041-1730032DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221844PMC
May 2021

Accelerated DNA methylation age and medication use among African Americans.

Aging (Albany NY) 2021 06 3;13(11):14604-14629. Epub 2021 Jun 3.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.

DNA methylation age acceleration, the discrepancy between epigenetic age and chronological age, is associated with mortality and chronic diseases, including diabetes, hypertension, and hyperlipidemia. In this study, we investigate whether medications commonly used to treat these diseases in 15 drug categories are associated with four epigenetic age acceleration measures: HorvathAge acceleration (HorvathAA), HannumAge acceleration (HannumAA), PhenoAge acceleration, and GrimAge acceleration (GrimAA) using cross-sectional (Phase 1, N=1,100) and longitudinal (Phases 1 and 2, N=266) data from African Americans in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. In cross-sectional analyses, the use of calcium channel blockers was associated with 1.27 years lower HannumAA after adjusting for covariates including hypertension (p=0.001). Longitudinal analyses showed that, compared to those who never used antihypertensives, those who started to take antihypertensives after Phase 1 had a 0.97-year decrease in GrimAA (p=0.007). In addition, compared to those who never used NSAID analgesics, those who started to take them after Phase 1 had a 2.61-year increase in HorvathAA (p=0.0005). Our study demonstrates that three commonly used medications are associated with DNAm age acceleration in African Americans and sheds light on the potential epigenetic effects of pharmaceuticals on aging at the cellular level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/aging.203115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221348PMC
June 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Genetic variants predictive of reproductive aging are associated with vasomotor symptoms in a multiracial/ethnic cohort.

Menopause 2021 Apr 26. Epub 2021 Apr 26.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI.

Objective: Vasomotor symptoms (VMS), hot flashes, and night sweats are cardinal symptoms of the menopausal transition. Little is known about genetic influences on VMS. This study evaluated whether previously identified genetic factors predictive of VMS, age at menarche, and age at menopause were associated with VMS in a multiracial/ethnic cohort.

Methods: For 702 White, 306 Black, 126 Chinese, and 129 Japanese women from the Study of Women's Health Across the Nation (SWAN) Genomic Substudy, we created polygenic risk scores (PRSs) from genome-wide association studies of VMS and ages at menarche and menopause. PRSs and single nucleotide polymorphisms (SNPs) from a previously identified VMS locus (tachykinin receptor 3 [TACR3]) were evaluated for associations with frequent VMS (VMS ≥6 days in the past 2 weeks at any visit) and with VMS trajectories (persistently low, early onset, final menstrual period onset, persistently high).

Results: The C-allele of rs74827081 in TACR3 was associated with reduced likelihood of frequent VMS in White women (odds ratio [OR] = 0.49 [95% CI, 0.29-0.83]). With higher menarche PRS (later menarche), Black women were less likely (OR = 0.55 [95% CI, 0.38-0.78]) to report frequent VMS. With higher PRS for age at menarche, Black women were also less likely to have a persistently high VMS trajectory (OR = 0.55 [95% CI, 0.34-0.91]), whereas White women (OR = 0.75 [95% CI, 0.58-0.98]) were less likely to have a final menstrual period onset trajectory (vs persistently low). Chinese women with higher menopause PRS were more likely to have frequent VMS (OR = 2.29 [95% CI, 1.39-3.78]). Associations were substantively similar after excluding rs74827081 C-allele carriers.

Conclusions: Genetic factors predictive of reproductive aging are also associated with VMS, suggesting that VMS have a polygenic architecture. Further study in this area may help to identify new targets for novel VMS therapies.

Video Summary:http://links.lww.com/MENO/A761.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/GME.0000000000001785DOI Listing
April 2021

Associations between polygenic risk score for age at menarche and menopause, reproductive timing, and serum hormone levels in multiple race/ethnic groups.

Menopause 2021 04 19;28(7):819-828. Epub 2021 Apr 19.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI.

Objective: We assessed associations of genetic loci that contribute to age at menarche and menopause with sentinel menopausal traits in multiple race/ethnic groups.

Methods: Genetic data from the Study of Women's Health Across the Nation include 738 White, 366 Black, 139 Chinese, and 145 Japanese women aged 42 to 52 at baseline. We constructed standardized polygenic risk scores (PRSs) using single nucleotide polymorphisms identified from large-scale genome-wide association studies meta-analyses of ages at menopause and menarche, evaluating associations with each trait within each race/ethnic group.

Results: Menopause PRS was significantly associated with age at menopause in White women after Bonferroni correction (P < 0.004) and nominally associated in Chinese and Japanese women (P < 0.05) (7.4-8.5 mo delay for one standard deviation [SD] increase in PRS). Menarche PRS was significantly associated with age at menarche in White (P < 0.004) and nominally associated in Black and Japanese women (P < 0.05) (2.6-4.8 mo delay for one SD increase). In White women, menarche and menopause PRSs were significantly associated (P < 0.004) with shorter and longer (5.9 and 9.6 mo for one SD increase) reproductive lifespans, respectively, and menopause PRS with a longer menopausal transition (7.1 mo for one SD increase). We observed a significant positive association (P < 0.004) between menopause PRS and E2 level 2 years before menopause and a nominal association (P < 0.05) 2 years after menopause in Japanese women.

Conclusions: In addition to menopausal timing, PRSs associated with onset and ending of reproductive life were associated with reproductive lifespan, length of the menopausal transition, and E2 levels in different race/ethnic groups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/GME.0000000000001775DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225555PMC
April 2021

A System for Phenotype Harmonization in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program.

Am J Epidemiol 2021 Apr 16. Epub 2021 Apr 16.

Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington.

Genotype-phenotype association studies often combine phenotype data from multiple studies to increase power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data sharing mechanisms. This system was developed for the National Heart, Lung and Blood Institute's Trans-Omics for Precision Medicine program, which is generating genomic and other omics data for >80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants from up to 17 studies per phenotype (participants recruited 1948-2012). We discuss challenges in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled-access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include (1) the code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify or extend these harmonizations to additional studies; and (2) results of labeling thousands of phenotype variables with controlled vocabulary terms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/aje/kwab115DOI Listing
April 2021

Allele-specific variation at APOE increases nonalcoholic fatty liver disease and obesity but decreases risk of Alzheimer's disease and myocardial infarction.

Hum Mol Genet 2021 Jul;30(15):1443-1456

Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is highly correlated with metabolic disease. NAFLD results from environmental exposures acting on a susceptible polygenic background. This study performed the largest multiethnic investigation of exonic variation associated with NAFLD and correlated metabolic traits and diseases. An exome array meta-analysis was carried out among eight multiethnic population-based cohorts (n = 16 492) with computed tomography (CT) measured hepatic steatosis. A fixed effects meta-analysis identified five exome-wide significant loci (P < 5.30 × 10-7); including a novel signal near TOMM40/APOE. Joint analysis of TOMM40/APOE variants revealed the TOMM40 signal was attributed to APOE rs429358-T; APOE rs7412 was not associated with liver attenuation. Moreover, rs429358-T was associated with higher serum alanine aminotransferase, liver steatosis, cirrhosis, triglycerides and obesity; as well as, lower cholesterol and decreased risk of myocardial infarction and Alzheimer's disease (AD) in phenome-wide association analyses in the Michigan Genomics Initiative, United Kingdom Biobank and/or public datasets. These results implicate APOE in imaging-based identification of NAFLD. This association may or may not translate to nonalcoholic steatohepatitis; however, these results indicate a significant association with advanced liver disease and hepatic cirrhosis. These findings highlight allelic heterogeneity at the APOE locus and demonstrate an inverse link between NAFLD and AD at the exome level in the largest analysis to date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab096DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8283205PMC
July 2021

Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.

Nat Commun 2021 04 12;12(1):2182. Epub 2021 Apr 12.

Division of Cardiology, George Washington University School of Medicine and Healthcare Sciences, Washington, DC, USA.

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22339-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042019PMC
April 2021

Epigenetic age acceleration is associated with cardiometabolic risk factors and clinical cardiovascular disease risk scores in African Americans.

Clin Epigenetics 2021 Mar 16;13(1):55. Epub 2021 Mar 16.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Background: Cardiovascular disease (CVD) is the leading cause of mortality among US adults. African Americans have higher burden of CVD morbidity and mortality compared to any other racial group. Identifying biomarkers for clinical risk prediction of CVD offers an opportunity for precision prevention and earlier intervention.

Results: Using linear mixed models, we investigated the cross-sectional association between four measures of epigenetic age acceleration (intrinsic (IEAA), extrinsic (EEAA), PhenoAge (PhenoAA), and GrimAge (GrimAA)) and ten cardiometabolic markers of hypertension, insulin resistance, and dyslipidemia in 1,100 primarily hypertensive African Americans from sibships in the Genetic Epidemiology Network of Arteriopathy (GENOA). We then assessed the association between epigenetic age acceleration and time to self-reported incident CVD using frailty hazard models and investigated CVD risk prediction improvement compared to models with clinical risk scores (Framingham risk score (FRS) and the atherosclerotic cardiovascular disease (ASCVD) risk equation). After adjusting for sex and chronological age, increased epigenetic age acceleration was associated with higher systolic blood pressure (IEAA), higher pulse pressure (EEAA and GrimAA), higher fasting glucose (PhenoAA and GrimAA), higher fasting insulin (EEAA), lower low density cholesterol (GrimAA), and higher triglycerides (GrimAA). A five-year increase in GrimAA was associated with CVD incidence with a hazard ratio of 1.54 (95% CI 1.22-2.01) and remained significant after adjusting for CVD risk factors. The addition of GrimAA to risk score models improved model fit using likelihood ratio tests (P = 0.013 for FRS and P = 0.008 for ASCVD), but did not improve C statistics (P > 0.05). Net reclassification index (NRI) showed small but significant improvement in reassignment of risk categories with the addition of GrimAA to FRS (NRI: 0.055, 95% CI 0.040-0.071) and the ASCVD equation (NRI: 0.029, 95% CI 0.006-0.064).

Conclusions: Epigenetic age acceleration measures are associated with traditional CVD risk factors in an African-American cohort with a high prevalence of hypertension. GrimAA was associated with CVD incidence and slightly improved prediction of CVD events over clinical risk scores.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13148-021-01035-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962278PMC
March 2021

Cumulative Genetic Risk and Are Independently Associated With Dementia Status in a Multiethnic, Population-Based Cohort.

Neurol Genet 2021 Apr 5;7(2):e576. Epub 2021 Mar 5.

Department of Epidemiology (K.M.B., S.L.R.K., J.A.S.), School of Public Health, University of Michigan; Survey Research Center (H.S.V., J.D.F., S.G.H., K.M.L., C.M.M., E.B.W.), Institute for Social Research, University of Michigan; VA Center for Clinical Management Research (K.M.L.), Ann Arbor, MI; Department of Neurology (J.J.M.), Columbia University, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain (J.J.M.), New York; and Department of Mental Health (K.S.B.), Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.

Objective: Alzheimer disease (AD) is a common and costly neurodegenerative disorder. A large proportion of AD risk is heritable, and many genetic risk factors have been identified. The objective of this study was to test the hypothesis that cumulative genetic risk of known AD markers contributed to odds of dementia in a population-based sample.

Methods: In the US population-based Health and Retirement Study (waves 1995-2014), we evaluated the role of cumulative genetic risk of AD, with and without the alleles, on dementia status (dementia, cognitive impairment without dementia, borderline cognitive impairment without dementia, and cognitively normal). We used logistic regression, accounting for demographic covariates and genetic principal components, and analyses were stratified by European and African genetic ancestry.

Results: In the European ancestry sample (n = 8,399), both AD polygenic score excluding the genetic region (odds ratio [OR] = 1.10; 95% confidence interval [CI]: 1.00-1.20) and the presence of any alleles (OR = 2.42; 95% CI: 1.99-2.95) were associated with the odds of dementia relative to normal cognition in a mutually adjusted model. In the African ancestry sample (n = 1,605), the presence of any alleles was associated with 1.77 (95% CI: 1.20-2.61) times higher odds of dementia, whereas the AD polygenic score excluding the genetic region was not significantly associated with the odds of dementia relative to normal cognition 1.06 (95% CI: 0.97-1.30).

Conclusions: Cumulative genetic risk of AD and are both independent predictors of dementia in European ancestry. This study provides important insight into the polygenic nature of dementia and demonstrates the utility of polygenic scores in dementia research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/NXG.0000000000000576DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938646PMC
April 2021

Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.

Nature 2021 02 10;590(7845):290-299. Epub 2021 Feb 10.

The Broad Institute of MIT and Harvard, Cambridge, MA, USA.

The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes). In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03205-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875770PMC
February 2021

Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability.

Nat Commun 2021 01 5;12(1):24. Epub 2021 Jan 5.

Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA.

Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19366-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785747PMC
January 2021

Do people have an ethical obligation to share their health information? Comparing narratives of altruism and health information sharing in a nationally representative sample.

PLoS One 2020 31;15(12):e0244767. Epub 2020 Dec 31.

Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI, United States of America.

Background: With the emergence of new health information technologies, health information can be shared across networks, with or without patients' awareness and/or their consent. It is often argued that there can be an ethical obligation to participate in biomedical research, motivated by altruism, particularly when risks are low. In this study, we explore whether altruism contributes to the belief that there is an ethical obligation to share information about one's health as well as how other health care experiences, perceptions, and concerns might be related to belief in such an obligation.

Methods: We conducted an online survey using the National Opinion Research Center's (NORC) probability-based, nationally representative sample of U.S. adults. Our final analytic sample included complete responses from 2069 participants. We used multivariable logistic regression to examine how altruism, together with other knowledge, attitudes, and experiences contribute to the belief in an ethical obligation to allow health information to be used for research.

Results: We find in multivariable regression that general altruism is associated with a higher likelihood of belief in an ethical obligation to allow one's health information to be used for research (OR = 1.22, SE = 0.14, p = 0.078). Trust in the health system and in care providers are both associated with a significantly higher likelihood of believing there is an ethical obligation to allow health information to be used (OR = 1.48, SE = 0.76, p<0.001; OR = 1.58, SE = 0.26, p<0.01, respectively).

Conclusions: Belief that there is an ethical obligation to allow one's health information to be used for research is shaped by altruism and by one's experience with, and perceptions of, health care and by general concerns about the use of personal information. Altruism cannot be assumed and researchers must recognize the ways encounters with the health care system influence (un)willingness to share one's health information.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244767PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7774955PMC
March 2021

Patient-Reported Experiences of Discrimination in the US Health Care System.

JAMA Netw Open 2020 12 1;3(12):e2029650. Epub 2020 Dec 1.

Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor.

Importance: Although considerable evidence exists on the association between negative health outcomes and daily experiences of discrimination, less is known about such experiences in the health care system at the national level. It is critically necessary to measure and address discrimination in the health care system to mitigate harm to patients and as part of the larger ongoing project of responding to health inequities.

Objectives: To (1) identify the national prevalence of patient-reported experiences of discrimination in the health care system, the frequency with which they occur, and the main types of discrimination experienced and (2) examine differences in the prevalence of discrimination across demographic groups.

Design, Setting, And Participants: This cross-sectional national survey fielded online in May 2019 used a general population sample from the National Opinion Research Center's AmeriSpeak Panel. Surveys were sent to 3253 US adults aged 21 years or older, including oversamples of African American respondents, Hispanic respondents, and respondents with annual household incomes below 200% of the federal poverty level.

Main Outcomes And Measures: Analyses drew on 3 survey items measuring patient-reported experiences of discrimination, the primary types of discrimination experienced, the frequency with which they occurred, and the demographic and health-related characteristics of the respondents. Weighted bivariable and multivariable logistic regressions were conducted to assess associations between experiences of discrimination and several demographic and health-related characteristics.

Results: Of 2137 US adult respondents who completed the survey (66.3% response rate; unweighted 51.0% female; mean [SD] age, 49.6 [16.3] years), 458 (21.4%) reported that they had experienced discrimination in the health care system. After applying weights to generate population-level estimates, most of those who had experienced discrimination (330 [72.0%]) reported experiencing it more than once. Of 458 reporting experiences of discrimination, racial/ethnic discrimination was the most common type (79 [17.3%]), followed by discrimination based on educational or income level (59 [12.9%]), weight (53 [11.6%]), sex (52 [11.4%]), and age (44 [9.6%]). In multivariable analysis, the odds of experiencing discrimination were higher for respondents who identified as female (odds ratio [OR], 1.88; 95% CI, 1.50-2.36) and lower for older respondents (OR, 0.98; 95% CI, 0.98-0.99), respondents earning at least $50 000 in annual household income (OR, 0.76; 95% CI, 0.60-0.95), and those reporting good (OR, 0.59; 95% CI, 0.46-0.75) or excellent (OR, 0.41; 95% CI, 0.31-0.56) health compared with poor or fair health.

Conclusions And Relevance: The results of this study suggest that experiences of discrimination in the health care system appear more common than previously recognized and deserve considerable attention. These findings contribute to understanding of the scale at which interpersonal discrimination occurs in the US health care system and provide crucial evidence for next steps in assessing the risks and consequences of such discrimination. The findings also point to a need for further analysis of how interpersonal discrimination interacts with structural inequities and social determinants of health to build effective responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2020.29650DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739133PMC
December 2020

Cerebral small vessel disease genomics and its implications across the lifespan.

Nat Commun 2020 12 8;11(1):6285. Epub 2020 Dec 8.

University of Alabama at Birmingham School of Medicine, Birmingham, AL, 35233, USA.

White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19111-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722866PMC
December 2020

A Noncoding Variant Near PPP1R3B Promotes Liver Glycogen Storage and MetS, but Protects Against Myocardial Infarction.

J Clin Endocrinol Metab 2021 Jan;106(2):372-387

Brigham and Women's Hospital, Havard University, Boston, MA, USA.

Context: Glycogen storage diseases are rare. Increased glycogen in the liver results in increased attenuation.

Objective: Investigate the association and function of a noncoding region associated with liver attenuation but not histologic nonalcoholic fatty liver disease.

Design: Genetics of Obesity-associated Liver Disease Consortium.

Setting: Population-based.

Main Outcome: Computed tomography measured liver attenuation.

Results: Carriers of rs4841132-A (frequency 2%-19%) do not show increased hepatic steatosis; they have increased liver attenuation indicative of increased glycogen deposition. rs4841132 falls in a noncoding RNA LOC157273 ~190 kb upstream of PPP1R3B. We demonstrate that rs4841132-A increases PPP1R3B through a cis genetic effect. Using CRISPR/Cas9 we engineered a 105-bp deletion including rs4841132-A in human hepatocarcinoma cells that increases PPP1R3B, decreases LOC157273, and increases glycogen perfectly mirroring the human disease. Overexpression of PPP1R3B or knockdown of LOC157273 increased glycogen but did not result in decreased LOC157273 or increased PPP1R3B, respectively, suggesting that the effects may not all occur via affecting RNA levels. Based on electronic health record (EHR) data, rs4841132-A associates with all components of the metabolic syndrome (MetS). However, rs4841132-A associated with decreased low-density lipoprotein (LDL) cholesterol and risk for myocardial infarction (MI). A metabolic signature for rs4841132-A includes increased glycine, lactate, triglycerides, and decreased acetoacetate and beta-hydroxybutyrate.

Conclusions: These results show that rs4841132-A promotes a hepatic glycogen storage disease by increasing PPP1R3B and decreasing LOC157273. rs4841132-A promotes glycogen accumulation and development of MetS but lowers LDL cholesterol and risk for MI. These results suggest that elevated hepatic glycogen is one cause of MetS that does not invariably promote MI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa855DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823249PMC
January 2021

Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.

Nat Genet 2020 12 23;52(12):1314-1332. Epub 2020 Nov 23.

Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.

Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00713-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610439PMC
December 2020

Epigenome-wide association study identifies DNA methylation sites associated with target organ damage in older African Americans.

Epigenetics 2020 Oct 26:1-14. Epub 2020 Oct 26.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.

Target organ damage (TOD) manifests as vascular injuries in the body organ systems associated with long-standing hypertension. DNA methylation in peripheral blood leukocytes can capture inflammatory processes and gene expression changes underlying TOD. We investigated the association between epigenome-wide DNA methylation and five measures of TOD (estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), left ventricular mass index (LVMI), relative wall thickness (RWT), and white matter hyperintensity (WMH)) in 961 African Americans from hypertensive sibships. A multivariate (multi-trait) model of eGFR, UACR, LVMI, and RWT identified seven CpGs associated with at least one of the traits (cg21134922, cg04816311 near , cg09155024, cg10254690 near , cg07660512, cg12661888 near , and cg02264946 near ) at FDR q < 0.1. Adjusting for blood pressure, body mass index, and type 2 diabetes attenuated the association for four CpGs. DNA methylation was associated with -gene expression for some CpGs, but no significant mediation by gene expression was detected. Mendelian randomization analyses suggested causality between three CpGs and eGFR (cg04816311, cg10254690, and cg07660512). We also assessed whether the identified CpGs were associated with TOD in 614 African Americans in the Hypertension Genetic Epidemiology Network (HyperGEN) study. Out of three CpGs available for replication, cg04816311 was significantly associated with eGFR (p = 0.0003), LVMI (p = 0.0003), and RWT (p = 0.002). This study found evidence of an association between DNA methylation and TOD in African Americans and highlights the utility of using a multivariate-based model that leverages information across related traits in epigenome-wide association studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15592294.2020.1827717DOI Listing
October 2020

Inherited causes of clonal haematopoiesis in 97,691 whole genomes.

Nature 2020 10 14;586(7831):763-768. Epub 2020 Oct 14.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer and coronary heart disease-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP). Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2819-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944936PMC
October 2020

Epigenetic loci for blood pressure are associated with hypertensive target organ damage in older African Americans from the genetic epidemiology network of Arteriopathy (GENOA) study.

BMC Med Genomics 2020 09 11;13(1):131. Epub 2020 Sep 11.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.

Background: Hypertension is a major modifiable risk factor for arteriosclerosis that can lead to target organ damage (TOD) of heart, kidneys, and peripheral arteries. A recent epigenome-wide association study for blood pressure (BP) identified 13 CpG sites, but it is not known whether DNA methylation at these sites is also associated with TOD.

Methods: In 1218 African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study, a cohort of hypertensive sibships, we evaluated the associations between methylation at these 13 CpG sites measured in peripheral blood leukocytes and five TOD traits assessed approximately 5 years later.

Results: Ten significant associations were found after adjustment for age, sex, blood cell counts, time difference between CpG and TOD measurement, and 10 genetic principal components (FDR q < 0.1): two with estimated glomerular filtration rate (eGFR, cg06690548, cg10601624), six with urinary albumin-to-creatinine ratio (UACR, cg16246545, cg14476101, cg19693031, cg06690548, cg00574958, cg22304262), and two with left ventricular mass indexed to height (LVMI, cg19693031, cg00574958). All associations with eGFR and four associations with UACR remained significant after further adjustment for body mass index (BMI), smoking status, and diabetes. We also found significant interactions between cg06690548 and BMI on UACR, and between 3 CpG sites (cg19693031, cg14476101, and cg06690548) and diabetes on UACR (FDR q < 0.1). Mediation analysis showed that 4.7% to 38.1% of the relationship between two CpG sites (cg19693031 and cg00574958) and two TOD measures (UACR and LVMI) was mediated by blood pressure (Bonferroni-corrected P < 0.05). Mendelian randomization analysis suggests that methylation at two sites (cg16246545 and cg14476101) in PHGDH may causally influence UACR.

Conclusions: In conclusion, we found compelling evidence for associations between arteriosclerotic traits of kidney and heart and previously identified blood pressure-associated DNA methylation sites. This study may lend insight into the role of DNA methylation in pathological mechanisms underlying target organ damage from hypertension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12920-020-00791-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488710PMC
September 2020

Genome-Wide Association Meta-Analysis of Individuals of European Ancestry Identifies Suggestive Loci for Sodium Intake, Potassium Intake, and Their Ratio Measured from 24-Hour or Half-Day Urine Samples.

J Nutr 2020 10;150(10):2635-2645

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Background: Excess sodium intake and insufficient potassium intake are risk factors for hypertension, but there is limited knowledge regarding genetic factors that influence intake. Twenty-hour or half-day urine samples provide robust estimates of sodium and potassium intake, outperforming other measures such as spot urine samples and dietary self-reporting.

Objective: The aim of this study was to investigate genomic regions associated with sodium intake, potassium intake, and sodium-to-potassium ratio measured from 24-h or half-day urine samples.

Methods: Using samples of European ancestry (mean age: 54.2 y; 52.3% women), we conducted a meta-analysis of genome-wide association studies in 4 cohorts with 24-h or half-day urine samples (n = 6,519), followed by gene-based analysis. Suggestive loci (P < 10-6) were examined in additional European (n = 844), African (n = 1,246), and Asian (n = 2,475) ancestry samples.

Results: We found suggestive loci (P < 10-6) for all 3 traits, including 7 for 24-h sodium excretion, 4 for 24-h potassium excretion, and 4 for sodium-to-potassium ratio. The most significant locus was rs77958157 near cocaine- and amphetamine-regulated transcript prepropeptide (CARTPT) , a gene involved in eating behavior and appetite regulation (P = 2.3 × 10-8 with sodium-to-potassium ratio). Two suggestive loci were replicated in additional samples: for sodium excretion, rs12094702 near zinc finger SWIM-type containing 5 (ZSWIM5) was replicated in the Asian ancestry sample reaching Bonferroni-corrected significance (P = 0.007), and for potassium excretion rs34473523 near sodium leak channel (NALCN) was associated at a nominal P value with potassium excretion both in European (P = 0.043) and African (P = 0.043) ancestry cohorts. Gene-based tests identified 1 significant gene for sodium excretion, CDC42 small effector 1 (CDC42SE1), which is associated with blood pressure regulation.

Conclusions: We identified multiple suggestive loci for sodium and potassium intake near genes associated with eating behavior, nervous system development and function, and blood pressure regulation in individuals of European ancestry. Further research is needed to replicate these findings and to provide insight into the underlying genetic mechanisms by which these genomic regions influence sodium and potassium intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxaa241DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549298PMC
October 2020

Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole-genome sequencing studies at scale.

Nat Genet 2020 09 24;52(9):969-983. Epub 2020 Aug 24.

Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0676-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483769PMC
September 2020

Association Between Episodic Memory and Genetic Risk Factors for Alzheimer's Disease in South Asians from the Longitudinal Aging Study in India-Diagnostic Assessment of Dementia (LASI-DAD).

J Am Geriatr Soc 2020 08;68 Suppl 3:S45-S53

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.

Background/objectives: Genetic factors play an important role in Alzheimer's disease (AD) and cognitive aging. However, it is unclear whether risk loci identified in European ancestry (EA) populations have similar effects in other groups, such as South Asians.

Design: We investigated the allelic distribution and cognitive associations of 56 known AD risk single-nucleotide polymorphisms (SNPs) identified from three EA genome-wide association studies (EA-GWASs) in a South Asian population. Single SNP and genetic risk score (GRS) associations with measures of episodic memory were assessed.

Setting: The Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD).

Participants: A total of 906 LASI-DAD participants from diverse states in India.

Measurements: Participants were genotyped using the Illumina Global Screening Array and imputed with 1000G Phase 3v5. Cognitive measures included total learning and delayed word recall.

Results: Although only a few SNPs were significantly associated with memory scores (P < .05), effect estimates from the EA-GWAS and the LASI-DAD showed moderate correlation (0.35-0.88) in the expected direction. GRSs were also associated with memory scores, although percentage variation explained was small (0.1%-0.6%).

Conclusions: Discrepancies in allele frequencies and cognitive association results suggest that genetic factors found predominantly through EA-GWASs may play a limited role in South Asians. However, the extent of differences in the genetic architecture of AD and cognition in EA and South Asians remains uncertain. There is also a critical need to perform a more comprehensive assessment of the mutational spectrum of South Asia to identify novel genetic variants associated with AD and cognition in this population. J Am Geriatr Soc 68:S45-S53, 2020.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jgs.16735DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7507858PMC
August 2020