Publications by authors named "Shaohua Chang"

43 Publications

Synthesis and biological evaluation of 4-(pyridin-4-oxy)-3-(3,3-difluorocyclobutyl)-pyrazole derivatives as novel potent transforming growth factor-β type 1 receptor inhibitors.

Eur J Med Chem 2020 Jul 29;198:112354. Epub 2020 Apr 29.

State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, People's Republic of China. Electronic address:

Inhibition of transforming growth factor β (TGF-β) type 1 receptor (ALK5) provides a feasible approach for the treatment of fibrotic diseases and malignant tumors. In this study, we designed and synthesized a new series of 4-(pyridin-4-oxy)-3-(3,3-difluorocyclobutyl)-pyrazole derivatives, and evaluated biologically as TGF-β type 1 receptor inhibitors. The most potent compound 15r inhibited the ALK5 enzyme and NIH3T3 cell viability with IC values of 44 and 42.5 nM, respectively. Compound 15r also displayed better oral plasma exposure and excellent bioavailability than LY-3200882, and in vivo inhibited 65.7% of the tumor growth in a CT26 xenograft mouse model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2020.112354DOI Listing
July 2020

Design, synthesis, and activity evaluation of novel erythropoietin mimetic peptides.

Bioorg Med Chem Lett 2018 10 3;28(18):3038-3041. Epub 2018 Aug 3.

Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China. Electronic address:

The approval of the erythropoietin (EPO) mimetic peptide drug peginesatide in 2012 was a breakthrough for the treatment of secondary anemia. However, due to severe allergic reactions, peginesatide was recalled a year later. In this study, 12 novel peptides were designed and synthesized by substituting specific amino acids of the monomeric peptide in peginesatide, with the aim of obtaining new EPO mimetic peptides with higher activities and lower side effects than the parent compound. Their cell proliferation activities were evaluated, and the structure-activity relationships were analyzed. Five compounds had equal cell proliferation activity to the control peptide. Among them, one compound showed a higher in vivo activity than the control peptide, with no obvious side effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2018.08.004DOI Listing
October 2018

The Effect of the Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid and Paclitaxel Treatment on Full-Thickness Wound Healing in Mice.

Ann Plast Surg 2018 10;81(4):482-486

Hematology and Oncology, Cooper University Hospital, Camden, NJ.

Introduction: Neoadjuvant chemotherapy prior to lumpectomy or mastectomy for breast cancer challenges wound healing. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has been shown to work synergistically with paclitaxel in vitro and in preclinical studies. In addition, our laboratory has demonstrated that SAHA treatment decreases paclitaxel-associated stem cell toxicity, modulates inflammatory response, and promotes wound healing in injured fibroblast cells. Our goal was to determine if combined SAHA and paclitaxel treatment would improve wound healing in an in vivo full-thickness murine model, without altering antitumor effect.

Methods: Thirty-two nude athymic mice received intraperitoneal injections of paclitaxel (20 mg/kg), SAHA (25 mg/kg), paclitaxel + SAHA (20 mg/kg + 25 mg/kg), or no treatment for 2 weeks prior to surgery. Under general anesthesia, 8-mm full-thickness dorsal wounds were created in all animals, and a silicone splint was attached to minimize wound contraction. The wounds were measured twice a week with a surgical caliper until healing was complete. To evaluate the in vivo effect of drug treatment, 16 athymic nude mice with MDA-MB-231 xenografts received the treatments described previously, following which tumor volumes were compared between groups.

Results: Average wound healing time was prolonged in mice treated with paclitaxel (20 ± 1.9 days), and combination SAHA + paclitaxel therapy improved average wound healing time (17.0 ± 1.8 days). In the xenograft model, the antitumor effect of SAHA and paclitaxel (average tumor volume 43.9 ± 34.1 mm) was greater than paclitaxel alone (105.8 ± 73.8 mm).

Conclusions: The addition of SAHA to taxane chemotherapy improves the therapeutic effect on triple-negative breast cancer while decreasing the detrimental effect of paclitaxel on wound healing. This may have substantial implications on improving outcomes in breast reconstruction following chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000001519DOI Listing
October 2018

Endothelial Differentiated Adipose-Derived Stem Cells Improvement of Survival and Neovascularization in Fat Transplantation.

Aesthet Surg J 2019 01;39(2):220-232

Department of Surgery, Cooper University Hospital, Camden, New Jersey.

Background: Adipose-derived stem cells (ASCs) assisted lipotransfer have been considered to facilitate the survival of fat grafts. However, emerging evidence of insufficient vascularization is another obstacle for fat graft survival in cell-assisted lipotransfer.

Objectives: This study evaluated if endothelial phenotype ASCs with fat lipoaspirate improves survival and neovascularization in fat transplantation.

Methods: ASCs were isolated from human periumbilical fat tissue and cultured in endothelial growth medium for 2 weeks. Fat lipoaspirate was mixed with fresh adipose stroma vascular fraction (SVF), endothelial differentiated ASCs (EC/ASCs), and fat lipoaspirate alone. Three fat mixtures were subcutaneously injected into the adult male Sprague-Dawley rat's dorsum at 3 locations. At 8 weeks after transplantation, the grafted fat lipoaspirates were harvested, and the extracted fat was evaluated using photographic, survival weights measurements and histological examination. Neo-vascularization was quantified by immunofluorescence and real-time RT-PCR.

Results: Grafts from the EC/ASC assisted group had a higher survival rate, morphologic integrity, and most uniform lipid droplets. They also revealed less inflammation and fibrosis with increased number of vessels by histological and immunofluorescence analysis. Quantitative RT-PCR analysis indicated that the expression levels of EC-specific markers of CD31 and vWF were higher in the EC/ASC group compared with in the control and fat with SVF transplants.

Conclusions: These results indicated that co-implantation of fat lipoaspirate with ASCs differentiated toward an endothelial phenotype improves both survival and neovascularization of the transplanted fat lipoaspirate, which might provide benefits and represents a promising strategy for clinical application in autologous fat transplantation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/asj/sjy130DOI Listing
January 2019

Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model.

J Vasc Surg 2018 12 9;68(6S):115S-125S. Epub 2018 May 9.

Department of Surgery, Cooper University Hospital, Camden, NJ. Electronic address:

Objective: The purpose of our study was to investigate the effect of adipose-derived stem cells (ASCs), endothelial-differentiated ASCs (EC/ASCs), and various conditioned media (CM) on wound healing in a diabetic swine model. We hypothesized that ASC-based therapies would accelerate wound healing.

Methods: Diabetes was induced in four Yorkshire swine through intravenous injection of streptozotocin. ASCs were harvested from flank fat and cultured in either M199 or EGM-2 medium. A duplicate series of seven full-thickness dorsal wounds were surgically created on each swine. The wounds in the cellular treatment group underwent injection of low-dose or high-dose ASCs or EC/ASCs on day 0, with a repeat injection of one half of the initial dose on day 15. Wounds assigned to the topical CM therapy were covered with 2 mL of either serum-free M199 primed by ASCs or human umbilical vein endothelial cells every 3 days. Wounds were assessed at day 0, 10, 15, 20, and 28. The swine were sacrificed on day 28. ImageJ software was used to evaluate the percentage of wound healing. The wounded skin underwent histologic, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay examinations to evaluate markers of angiogenesis and inflammation.

Results: We found an increase in the percentage of wound closure rates in cell-based treatments and topical therapies at various points compared with the untreated control wounds (P < .05). The results from the histologic, messenger RNA, and protein analyses suggested the treated wounds displayed increased angiogenesis and a diminished inflammatory response.

Conclusions: Cellular therapy with ASCs, EC/ASCs, and topical CM accelerated diabetic wound healing in the swine model. Enhanced angiogenesis and immunomodulation might be key contributors to this process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2018.01.065DOI Listing
December 2018

Human adipose-derived stem cell treatment modulates cellular protection in both in vitro and in vivo traumatic brain injury models.

J Trauma Acute Care Surg 2018 05;84(5):745-751

From the Department of Surgery (N.S.K., S.C., W.M.H., M.P., T.O., P.Z., J.P.C., S.A.B.), Cooper University Hospital, Camden, NJ; and Division of Trauma (J.P.H.), Cooper University Hospital, Camden, NJ.

Background: Traumatic brain injury (TBI) is a common cause of morbidity and mortality in the civilian population. The purpose of this study was to examine the effect(s) of adipose-derived stem cell (ASC) treatment on cellular and functional recovery in TBI via both in vitro and in vivo methods.

Methods: Cultured neuroblastoma cells, SH-SY5Y, were scratched to mimic TBI in an in vitro model. The effect of ASC-conditioned medium (CM) on cell death, mitochondrial function, and expression of inflammatory cytokines (tumor necrosis factor α [TNF-α], interleukin 1β [IL-1β], and IL-6), as well as apoptosis marker FAS, was measured. In our in vivo model, Sprague-Dawley rats underwent TBI via a frontal, closed-head injury model. Animals randomly received either intravenous human-derived ASCs or intravenous saline within 3 hours of injury and were compared with a sham group. Functional recovery was evaluated via accelerating Rotarod method. On post-TBI Day 3, brain tissue was harvested and assessed for cellular damage via enzyme-linked immunosorbent assay for TNF-α, as well as immunohistochemical staining for β-amyloid precursor protein (β-APP).

Results: Our in vitro data show that ASC treatment imparted reduced cell death (ratio to control: 1.21 ± 0.066 vs. 1.01 ± 0.056, p = 0.017), increased cell viability (ratio to control: 0.86 ± 0.009 vs. 1.09 ± 0.01, p = 0.0001), increased mitochondrial function (percentage of control: 78 ± 6% vs. 68 ± 3%), and significantly decreased levels of inflammatory cytokine IL-1β. In our in vivo study, compared with TBI alone, ASC-treated animals showed no difference in functional recovery, lower levels of expressed TNF-α (ratio to total protein, 0.47 ± 0.01 vs. 0.67 ± 0.04; p < 0.01), and lower levels of β-amyloid precursor protein (fluorescence ratio, 0.43 ± 0.05 vs. 0.69 ± 0.03; p < 0.01).

Conclusions: Adipose-derived stem cell treatment results in improved cell survival, decreased inflammatory marker release, and decreased evidence of neural injury. No difference in functional recovery was seen. These data suggest the potential for ASC treatment to aid in cellular protection and recovery in neural cells following TBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/TA.0000000000001770DOI Listing
May 2018

The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes.

J Vasc Surg 2018 07 29;68(1):234-244. Epub 2017 Jul 29.

Department of Surgery, Cooper University Hospital, Camden, NJ. Electronic address:

Background: Chronic wounds are a common surgical problem exacerbated by diabetes and ischemia. Although adipose-derived stem cells (ASCs) have shown promise as a wound healing therapy, their function and proliferation are hindered in diabetes. This study examines the ability of the human umbilical vein endothelial cell (HUVEC) secretome to reverse the deleterious effects of high glucose concentrations on ASCs through priming, thereby enhancing their ability to participate in angiogenesis and wound healing.

Methods: Institutional review board-approved human ASCs were cultured in M199 medium with or without glucose (30 mmol/L). HUVEC were grown in 30 mmol/L glucose-containing M199 medium; the resulting conditioned medium (HUVEC-CM) was collected every 3 days and used to prime ASCs. An aliquot of HUVEC-CM was heated (85°C for 30 minutes) to produce thermal denaturation of protein. Viability, proliferation, and endothelial differentiation were measured by MTT assays, growth curves, and quantitative polymerase chain reaction, respectively. A Matrigel assay was used to assess the ability of primed ASCs to participate in capillary-like tube formation. An Institutional Animal Care and Use Committee-approved in vivo murine model of diabetic and ischemic hindlimbs was used to evaluate the angiogenic potential of primed stem cells. Human ASCs were cultured with either control M199 or HUVEC-CM. Mice were randomized to a control group, an unprimed ASC group, or a HUVEC-primed ASC group. Cellular therapies were injected into the ischemic muscle. Thirty days later, slides were made. Microvessels were counted by three blinded observers.

Results: MTT assays revealed that HUVEC-priming induced a 1.5 times increase in cell viability over diabetic controls. This promoting effect was lost with heated HUVEC-CM (P < .001), indicating that the active molecules are of protein origin. After 9 days, ASCs cultured in 30 mmol/L glucose solution showed a 14% reduction in growth from nondiabetic controls (P = .013) and exhibited atrophic morphology. Conversely, diabetic HUVEC-primed stem cells demonstrated a nearly four-fold increase in proliferation (P < .05) and took on a fusiform, endothelial-like phenotype. Polymerase chain reaction demonstrated enhanced expression of CD31 messenger RNA by 4.7-fold after 14 days in the HUVEC-primed group, and endothelial nitric oxide synthase messenger RNA messenger RNA was increased 20.1-fold from controls. Unlike unprimed controls, HUVEC-primed ASCs readily formed capillary-like tube networks on Matrigel. Diabetic mice that were injected with HUVEC-primed ASCs demonstrated greater vessel density than both controls (2.1-fold) and unprimed stem cell treatments (P < .001).

Conclusions: HUVECs secrete protein factors that significantly increase proliferation and endothelial differentiation of ASCs under diabetic conditions. Injection of ischemic hindlimbs in diabetic mice with HUVEC-primed ASCs leads to enhanced angiogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2017.05.094DOI Listing
July 2018

Histone Deacetylase Inhibitors Enhance Cytotoxicity Towards Breast Tumors While Preserving the Wound-Healing Function of Adipose-Derived Stem Cells.

Ann Plast Surg 2017 Jun;78(6):728-735

From the *Cooper University Hospital; and †Cooper Medical School of Rowan University, Camden, NJ.

Introduction: Paclitaxel improves the oncologic response of breast cancer resections; however, it may negatively affect the wound-healing potential of human adipose-derived stem cells (hASCs) for fat grafting and reconstructive surgery. Histone deacetylase inhibitors (HDACis) modify the epigenetic regulation of gene expression and stabilize microtubules similarly to paclitaxel, thus, creating a synergistic mechanism of cell cycle arrest. We aim to combine these drugs to enhance cytotoxicity towards breast cancer cells, while preserving the wound-healing function of hASCs for downstream reconstructive applications.

Methods: Triple negative breast cancer cells (MBA-MB-231) and hASCs (institutional review board-approved clinical isolates) were treated with a standard therapeutic dose of paclitaxel (1.0 μM) or with low-dose paclitaxel (0.1 μM) combined with the HDACi suberoylanilide hydroxamic acid or trichostatin A. Cell viability, gene expression, apoptosis, and wound-healing/migration were measured via methylthiazol tetrazolium assay, quantitative real-time polymerase chain reaction, annexin V assay, and fibroblast scratch assay, respectively.

Results: Combined HDACi and low-dose paclitaxel therapy maintained cytotoxicity towards breast cancer cells and preserved adipose-derived stem cell viability. Histone deacetylase inhibitor demonstrated selective anti-inflammatory effects on adipose-derived stem cell gene expression and decreased expression of the proapoptotic gene FAS. Furthermore, HDACi therapy did not increase relative apoptosis within hASCs. A scratch assay demonstrated enhanced wound healing among injured fibroblasts indirectly co-cultured with HDACi-treated hASCs.

Conclusions: Combining HDACi with low-dose paclitaxel improved cytotoxicity towards breast cancer cells and preserved hASC viability. Furthermore, enhanced wound healing was observed by improved migration in a fibroblast scratch assay. These results suggest that the addition of HDACi to taxane chemotherapy regimens may improve oncologic results and wound-healing outcomes after reconstructive surgery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000001066DOI Listing
June 2017

Evaluation of function and recovery of adipose-derived stem cells after exposure to paclitaxel.

Cytotherapy 2017 02 22;19(2):211-221. Epub 2016 Nov 22.

Department of Surgery, Cooper University Hospital, Camden, New Jersey, USA.

Background Aims: Adipose-derived stem cells (ASCs) are considered to play a positive role in wound healing as evidenced by their increasing use in breast reconstructive procedures. After chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. In the present study, the functional capabilities and recovery of ASCs after exposure to chemotherapeutic agent paclitaxel (PTX) using in vitro and ex vivo models were demonstrated.

Methods: Human ASCs were isolated from periumbilical fat tissue and treated with PTX at various concentrations. Adult Sprague-Dawley rats were given intravenous injections with PTX. Two and four weeks after the initial PTX treatment, ASCs were isolated from rat adipose tissue. Proliferation, cell viability, apoptosis and cell migration rates were measured by growth curves, MTT assays, flow cytometry and scratch assays. ASCs were cultured in derivative-specific differentiation media with or without PTX for 3 weeks. Adipogenic, osteogenic and endothelial differentiation levels were measured by quantitative reverse transcriptase polymerase chain reaction and histological staining.

Results: PTX induced apoptosis, decreased the proliferation and cell migration rates of ASCs and inhibited ASCs multipotent differentiation in both in vitro human ASC populations and ex vivo rat ASC populations with PTX treatment. Furthermore, after cessation of PTX, ASCs exhibited recovery potential of differentiation capacity in both in vitro and animal studies.

Conclusions: Our results provide insight into poor soft tissue wound healing and promote further understanding of the potential capability of ASCs to serve as a cell source for fat grafting and reconstruction in cancer patients undergoing chemotherapy treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcyt.2016.10.010DOI Listing
February 2017

Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells.

J Vasc Surg 2017 05 8;65(5):1483-1492. Epub 2016 Aug 8.

Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ. Electronic address:

Objective: Adipose-derived stem cells (ASCs) are a potential adult mesenchymal stem cell source for restoring endothelial function in patients with critical limb ischemia. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor (VEGF) play a major role in angiogenesis and wound healing. This study evaluated the effects of FGF and VEGF on the proliferation, migration, and potential endothelial differentiation of human ASCs with regards to their use as endothelial cell substitutes.

Methods: ASCs were isolated from clinical lipoaspirates and cultured in M199 medium with fetal bovine serum (10%), FGF2 (10 ng/mL), VEGF (50 ng/mL), or combinations of FGF2 and VEGF. Cell proliferation rates, viability, and migration were measured by growth curves, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), and scratch assays. For cell attachment determinations, ASCs were seeded onto a scaffold of small intestinal submucosa for 5 days. Endothelial differentiation capabilities of ASCs were confirmed by expression of endothelial cell-specific markers using quantitative polymerase chain reaction, immunofluorescence staining, and cord formation on Matrigel (BD Biosciences, San Jose, Calif). PD173074, a selective inhibitor of FGF receptor, was used to confirm the importance of FGF signaling.

Results: ASCs treated with FGF or combinations of FGF and VEGF showed increased proliferation rates and consistent differentiation toward an endothelial cell lineage increase in platelet endothelial cell adhesion molecule (CD31), von Willebrand factor, endothelial nitric oxide synthase, and vascular endothelial cadherin message, and in protein and cord formation on Matrigel. FGF and VEGF stimulated ASC migration and increased the attachment and retention after seeding onto a matrix graft of small intestinal submucosa. Blockade of FGF signaling with PD173074 abrogated ASC endothelial cell differentiation potential.

Conclusions: These results indicate that FGF and VEGF are ASC promoters for proliferation, migration, attachment, and endothelial differentiation. FGF and VEGF have a costimulatory effect on ASC endotheliogenesis. These results further suggest that ASCs with enhanced FGF signaling may potentially be used for tissue engineering and cell-based therapies in patients with critical limb ischemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2016.04.034DOI Listing
May 2017

In vitro effects of tamoxifen on adipose-derived stem cells.

Wound Repair Regen 2015 Sep 14;23(5):728-36. Epub 2015 Jul 14.

Department of Surgery, Cooper University Hospital, Camden, New Jersey.

In breast reconstructive procedures, adipose-derived stem cells (ASCs) that are present in clinical fat grafting isolates are considered to play the main role in improving wound healing. In patients following chemotherapy for breast cancer, poor soft tissue wound healing is a major problem. However, it is unclear if tamoxifen (TAM) as the most widely used hormonal therapeutic agent for breast cancer treatment, affects the ASCs and ultimately wound healing. This study evaluated whether TAM exposure to in vitro human ASCs modulate cellular functions. Human ASCs were isolated and treated with TAM at various concentrations. The effects of TAM on cell cycle, cell viability and proliferation rates of ASCs were examined by growth curves, MTT assay and BrdU incorporation, respectively. Annexin V and JC-1 Mitochondrial Membrane Potential assays were used to analyze ASC apoptosis rates. ASCs were cultured in derivative-specific differentiation media with or without TAM (5 uM) for 3 weeks. Adipogenic and osteogenic differentiation levels were measured by quantitative RT-PCR and histological staining. TAM has cytotoxic effects on human ASCs through apoptosis and inhibition of proliferation in dose- and time-dependent manners. TAM treatment significantly down-regulates the capacity of ASCs for adipogenic and osteogenic differentiation (p<0.05 vs. control), and inhibit the ability of the ASCs to subsequently formed cords in Matrigel. This study is the first findings to our knowledge that demonstrated that TAM inhibited ASC proliferation and multi-lineage ASC differentiation rates. These results may provide insight into the role of TAM with associated poor soft tissue wound healing and decreased fat graft survival in cancer patients receiving TAM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12322DOI Listing
September 2015

Protein kinase C modulates frequency of micturition and non-voiding contractions in the urinary bladder via neuronal and myogenic mechanisms.

BMC Urol 2015 Apr 21;15:34. Epub 2015 Apr 21.

Division of Urology, Department of Surgery, University of Colorado Denver, Anschutz Medical Campus,12700 E 19th Ave, Mail Stop C317, Aurora, CO, 80045, USA.

Background: Protein Kinase C (PKC) dysfunction is implicated in a variety of smooth muscle disorders including detrusor overactivity associated with frequency and urgency of micturition. In this study, we aimed to evaluate the modulatory effects of endogenous PKC-dependent pathways on bladder storage and emptying function.

Methods: We utilized in vivo cystometry and in vitro organ bath studies using isolated bladder muscle strips (BMS) from rats to measure contractility, intravesical pressure, and voided volume. Both in vitro and in vivo results were statistically analyzed using one-way repeated measures ANOVA between the groups followed by Bonferroni's post-test, as appropriate (Systat Software Inc., San Jose, CA).

Results: Effects of PKC activators, phorbol-12,13-dibutyrate (PDBu), and phorbol-12,13-myristate (PMA), were concentration-dependent, with high concentrations increasing frequency of micturition, and sensitivity of intramural nerves to electrical field stimulation (EFS), in vitro, while lower concentrations had no effect on BMS sensitivity to EFS. The PKC inhibitors, bisindolylmaleimide1 (Bim-1), (28 nM), and Ro318220 (50 μM) triggered an increase in the number of non-voiding contractions (NVC), and a decrease in the voided volume associated with reduced ability to maintain contractile force upon EFS, but did not affect peak force in vitro. Both low (50 nM) and high PDBu 1 micromolar (1 uM) decreased the sensitivity of BMS to carbachol. Application of a low concentration of PDBu inhibited spontaneous contractions, in vitro, and Bim-1-induced NVC, and restored normal voiding frequency during urodynamic recordings in vivo.

Conclusions: In summary, the effects of low PKC stimulation include inhibition of smooth muscle contractile responses, whereas high levels of PKC stimulation increased nerve-mediated contractions in vitro, and micturition contractions in vivo. These results indicate that endogenous PKC signaling displays a concentration-dependent contraction profile in the urinary bladder via both smooth muscle and nerve-mediated pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12894-015-0030-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407874PMC
April 2015

Paclitaxel impairs adipose stem cell proliferation and differentiation.

J Surg Res 2015 Jun 18;196(2):404-15. Epub 2015 Mar 18.

Department of Plastic Surgery, Cooper University Hospital, Camden, New Jersey.

Background: Cancer patients with chemotherapy-induced immunosuppression have poor surgical site wound healing. Prior literature supports the use of human adipose-derived stem cell (hASC) lipoinjection to improve wound healing. It has been established that multipotent hASCs facilitate neovascularization, accelerate epithelialization, and quicken wound closure in animal models. Although hASC wound therapy may benefit surgical cancer patients, the chemotherapeutic effects on hASCs are unknown. We hypothesized that paclitaxel, a chemotherapeutic agent, impairs hASC growth, multipotency, and induces apoptosis.

Methods: hASCs were isolated and harvested from consented, chemotherapy and radiation naive patients. Growth curves, MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide), and EdU (5-ethynyl-2-deoxyguridine) assays measured cytotoxicity and proliferation. Oil Red O stain, Alizarin Red stain, matrigel tube formation assay, and quantitative polymerase chain reaction analyzed hASC differentiation. Annexin V assay measured apoptosis. Immunostaining and Western blot determined tumor necrosis factor α (TNF-α) expression.

Results: hASCs were selectively more sensitive to paclitaxel (0.01-30 μM) than fibroblasts (P < 0.05). After 12 d, paclitaxel caused hASC growth arrest, whereas control hASCs proliferated (P = 0.006). Paclitaxel caused an 80.6% reduction in new DNA synthesis (P < 0.001). Paclitaxel severely inhibited endothelial differentiation and capillary-like tube formation. Differentiation markers, lipoprotein lipase (adipogenic), alkaline phosphatase (osteogenic), CD31, and van Willebrand factor (endothelial), were significantly decreased (all P < 0.05) confirming paclitaxel impaired differentiation. Paclitaxel was also found to induce apoptosis and TNF-α was upregulated in paclitaxel-treated hASCs (P < 0.001).

Conclusions: Paclitaxel is more cytotoxic to hASCs than fibroblasts. Paclitaxel inhibits hASC proliferation, differentiation, and induces apoptosis, possibly through the TNF-α pathway. Paclitaxel's severe inhibition of endothelial differentiation indicates neovascularization disruption, possibly causing poor wound healing in cancer patients receiving chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2015.03.026DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442730PMC
June 2015

Elevated Autophagy and Mitochondrial Dysfunction in the Smith-Lemli-Opitz Syndrome.

Mol Genet Metab Rep 2014 ;1:431-442

Department of Surgery, Cooper University Hospital, Cooper Medical School at Rowan University, Camden, NJ 08103.

Smith-Lemli-Opitz syndrome (SLOS) is a congenital, autosomal recessive metabolic and developmental disorder caused by mutations in the enzyme which catalyzes the reduction of 7-dehydrocholesterol (7DHC) to cholesterol. Herein we show that dermal fibroblasts obtained from SLOS children display increased basal levels of LC3B-II, the hallmark protein signifying increased autophagy. The elevated LC3B-II is accompanied by increased beclin-1 and cellular autophagosome content. We also show that the LC3B-II concentration in SLOS cells is directly proportional to the cellular concentration of 7DHC, suggesting that the increased autophagy is caused by 7DHC accumulation secondary to defective DHCR7. Further, the increased basal LC3B-II levels were decreased significantly by pretreating the cells with antioxidants implicating a role for oxidative stress in elevating autophagy in SLOS cells. Considering the possible source of oxidative stress, we examined mitochondrial function in the SLOS cells using JC-1 assay and found significant mitochondrial dysfunction compared to mitochondria in control cells. In addition, the levels of PINK1 which targets dysfunctional mitochondria for removal by the autophagic pathway are elevated in SLOS cells, consistent with mitochondrial dysfunction as a stimulant of mitophagy in SLOS. This suggests the increase in autophagic activity may be protective, i.e., to remove dysfunctional mitochondria. Taken together, these studies are consistent with a role for mitochondrial dysfunction leading to increased autophagy in SLOS pathophysiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgmr.2014.09.005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231544PMC
January 2014

Sphingosine-1-phosphate promotes the differentiation of adipose-derived stem cells into endothelial nitric oxide synthase (eNOS) expressing endothelial-like cells.

J Biomed Sci 2014 Jun 4;21:55. Epub 2014 Jun 4.

Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, 3 Cooper Plaza, Camden, NJ 08103, USA.

Background: Adipose tissue provides a readily available source of autologous stem cells. Adipose-derived stem cells (ASCs) have been proposed as a source for endothelial cell substitutes for lining the luminal surface of tissue engineered bypass grafts. Endothelial nitric oxide synthase (eNOS) is a key protein in endothelial cell function. Currently, endothelial differentiation from ASCs is limited by poor eNOS expression. The goal of this study was to investigate the role of three molecules, sphingosine-1-phosphate (S1P), bradykinin, and prostaglandin-E1 (PGE1) in ASC endothelial differentiation. Endothelial differentiation markers (CD31, vWF and eNOS) were used to evaluate the level of ASCs differentiation capability.

Results: ASCs demonstrated differentiation capability toward to adipose, osteocyte and endothelial like cell phenotypes. Bradykinin, S1P and PGE were used to promote differentiation of ASCs to an endothelial phenotype. Real-time PCR showed that all three molecules induced significantly greater expression of endothelial differentiation markers CD31, vWF and eNOS than untreated cells. Among the three molecules, S1P showed the highest up-regulation on endothelial differentiation markers. Immunostaining confirmed presence of more eNOS in cells treated with S1P than the other groups. Cell growth measurements by MTT assay, cell counting and EdU DNA incorporation suggest that S1P promotes cell growth during ASCs endothelial differentiation. The S1P1 receptor was expressed in ASC-differentiated endothelial cells and S1P induced up-regulation of PI3K.

Conclusions: S1P up-regulates endothelial cell markers including eNOS in ASCs differentiated to endothelial like cells. This up-regulation appears to be mediated by the up-regulation of PI3K via S1P1 receptor. ASCs treated with S1P offer promising use as endothelial cell substitutes for tissue engineered vascular grafts and vascular networks.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1423-0127-21-55DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064270PMC
June 2014

Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel.

J Physiol 2014 Jul 6;592(14):3013-30. Epub 2014 May 6.

Division of Urology, Department of Surgery, University of Pennsylvania, PA, USA

The mechanisms of mechanosensitivity underlying the response of the human bladder to stretch are poorly understood. Animal data suggest that stretch-activated two-pore-domain (K2P) K(+) channels play a critical role in bladder relaxation during the filling phase. The objective of this study was to characterize the expression and function of stretch-activated K2P channels in the human bladder and to clarify their physiological role in bladder mechanosensitivity. Gene and protein analysis of the K2P channels TREK-1, TREK-2 and TRAAK in the human bladder revealed that TREK-1 is the predominantly expressed member of the mechano-gated subfamily of K2P channels. Immunohistochemical labelling of bladder wall identified higher levels of expression of TREK-1 in detrusor smooth muscle cells in comparison to bladder mucosa. Functional characterization and biophysical properties of the predominantly expressed member of the K2P family, the TREK-1 channel, were evaluated by in vitro organ bath studies and the patch-clamp technique. Electrophysiological recordings from single smooth muscle cells confirmed direct activation of TREK-1 channels by mechanical stretch and negative pressure applied to the cell membrane. Inhibition of TREK-1 channels in the human detrusor significantly delayed relaxation of the stretched bladder smooth muscle strips and triggered small-amplitude spontaneous contractions. Application of negative pressure to cell-attached patches (-20 mmHg) caused a 19-fold increase in the open probability (NPo) of human TREK-1 channels. l-Methionine (1 mm), a specific TREK-1 inhibitor, dramatically decreased the NPo of TREK-1 channels from 0.045 ± 0.003 to 0.008 ± 0.001 (n = 8, P ≤ 0.01). Subsequent addition of arachidonic acid (10 μm), a channel opener, increased the open probability of methionine-inhibited unitary currents up to 0.43 ± 0.05 at 0 mV (n = 9, P ≤ 0.05). The results of our study provide direct evidence that the response of the human detrusor to mechanical stretch is regulated by activation of mechano-gated TREK-1 channels. Impaired mechanosensation and mechanotransduction associated with the changes in stretch-activated K2P channels may underlie myogenic bladder dysfunction in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2014.271718DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214657PMC
July 2014

Effects of Rho-kinase inhibition on myosin light chain phosphorylation and obstruction-induced detrusor overactivity.

Int J Urol 2014 Mar 29;21(3):319-24. Epub 2013 Aug 29.

School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.

Objectives: To study the relationship between myosin light chain phosphorylation of the detrusor muscle and spontaneous smooth muscle contractions in a rabbit model of partial outlet obstruction.

Methods: New Zealand white rabbit urinary bladders were partially obstructed for 2 weeks. Rabbits were euthanized, detrusor muscle strips were hung on a force transducer and spontaneous activity was measured at varying concentrations (0-0.03 μM/L) of the Rho-kinase inhibitors GSK 576371 or 0.01 μM/L Y27632. Basal myosin light chain phosphorylation was measured by 2-D gel electrophoresis in control and GSK 576371-treated strips.

Results: Both drugs suppressed the force of spontaneous contractions, whereas GSK 576371 had a more profound effect on the frequency of the contractions. The IC₅₀ values for the inhibition of frequency and force of spontaneous contractions were 0.17 μM/L and 0.023 μM/L for GSK 576371, respectively. The compound significantly decreased the basal myosin light chain phosphorylation from 28.0 ± 3.9% to 13.5 ± 1.9% (P < 0.05). At 0.01 μM/L, GSK 576371 inhibited spontaneous bladder overactivity by 50%, but inhibited carbachol-elicited contractions force by just 25%.

Conclusions: These data suggest that Rho-kinase regulation of myosin light chain phosphorylation contributes to the spontaneous detrusor activity induced by obstruction. This finding could have therapeutic implications by providing another therapeutic option for myogenic, overactive bladder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/iju.12247DOI Listing
March 2014

Amino acid mutations in the caldesmon COOH-terminal functional domain increase force generation in bladder smooth muscle.

Am J Physiol Renal Physiol 2013 Nov 28;305(10):F1455-65. Epub 2013 Aug 28.

Dept. of Surgery and Dept. of Pathobiology, Univ. of Pennsylvania, 500 South Ridgeway Ave., Glenolden, PA 19036.

Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512-530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys(523) to Gln, Val(524) to Leu, Ser(526) to Thr, Pro(527) to Cys, and Lys(529) to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (-/-) animals did not develop, but heterozygous (+/-) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00174.2013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840250PMC
November 2013

Bladder outlet obstruction triggers neural plasticity in sensory pathways and contributes to impaired sensitivity in erectile dysfunction.

Am J Physiol Regul Integr Comp Physiol 2013 May 27;304(10):R837-45. Epub 2013 Mar 27.

Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, PA, USA.

Lower urinary tract symptoms (LUTS) and erectile dysfunction (ED) are common problems in aging males worldwide. The objective of this work was to evaluate the effects of bladder neck nerve damage induced by partial bladder outlet obstruction (PBOO) on sensory innervation of the corpus cavernosum (CC) and CC smooth muscle (CCSM) using a rat model of PBOO induced by a partial ligation of the bladder neck. Retrograde labeling technique was used to label dorsal root ganglion (DRG) neurons that innervate the urinary bladder and CC. Contractility and relaxation of the CCSM was studied in vitro, and expression of nitric oxide synthase (NOS) was evaluated by Western blotting. Concentration of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide was measured by ELISA. Partial obstruction of the bladder neck caused a significant hypertrophy of the urinary bladders (2.5-fold increase at 2 wk). Analysis of L6-S2 DRG sections determined that sensory ganglia received input from both the urinary bladder and CC with 5-7% of all neurons double labeled from both organs. The contractile responses of CC muscle strips to KCl and phenylephrine were decreased after PBOO, followed by a reduced relaxation response to nitroprusside. A significant decrease in neuronal NOS expression, but not in endothelial NOS or protein kinase G (PKG-1), was detected in the CCSM of the obstructed animals. Additionally, PBOO caused some impairment to sensory nerves as evidenced by a fivefold downregulation of SP in the CC (P ≤ 0.001). Our results provide evidence that PBOO leads to the impairment of bladder neck afferent innervation followed by a decrease in CCSM relaxation, downregulation of nNOS expression, and reduced content of sensory neuropeptides in the CC smooth muscle. These results suggest that nerve damage in PBOO may contribute to LUTS-ED comorbidity and trigger secondary changes in the contraction/relaxation mechanisms of CCSM.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00558.2012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6195648PMC
May 2013

Effect of estrogen on molecular and functional characteristics of the rodent vaginal muscularis.

J Sex Med 2013 May 25;10(5):1219-30. Epub 2013 Feb 25.

Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, DC 20057, USA.

Introduction: Vaginal atrophy is a consequence of menopause; however, little is known concerning the effect of a decrease in systemic estrogen on vaginal smooth muscle structure and function. As the incidence of pelvic floor disorders increases with age, it is important to determine if estrogen regulates the molecular composition and contractility of the vaginal muscularis.

Aim: The goal of this study was to determine the effect of estrogen on molecular and functional characteristics of the vaginal muscularis utilizing a rodent model of surgical menopause.

Methods: Three- to 4-month old Sprague-Dawley rats underwent sham laparotomy (Sham, N = 18) or ovariectomy (Ovx, N = 39). Two weeks following surgery, animals received a subcutaneous osmotic pump containing vehicle (Sham, Ovx) or 17β-estradiol (Ovx). Animals were euthanized 1 week later, and the proximal vagina was collected for analysis of contractile protein expression and in vitro studies of contractility. Measurements were analyzed using a one-way analysis of variance followed by Tukey's post hoc analysis (α = 0.05).

Main Outcome Measures: Protein and mRNA transcript expression levels of contractile proteins, in vitro measurements of vaginal contractility.

Results: Ovariectomy decreased the expression of carboxyl-terminal myosin heavy chain isoform (SM1) and h-caldesmon and reduced the amplitude of contraction of the vaginal muscularis in response to KCl. Estradiol replacement reversed these changes. No differences were detected in the % vaginal muscularis, mRNA transcript expression of amino-terminal MHC isoforms, l-caldesmon expression, and maximal velocity of shortening.

Conclusion: Systemic estrogen replacement restores functional and molecular characteristics of the vaginal muscularis of ovariectomized rats. Our results indicate that menopause is associated with changes in the vaginal muscularis, which may contribute to the increased incidence of pelvic floor disorders with age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jsm.12088DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637855PMC
May 2013

Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways.

J Neuroinflammation 2013 Jan 11;10. Epub 2013 Jan 11.

Department of Surgery, Division of Urology, University of Pennsylvania, 500 South Ridgeway Avenue, Glenolden, PA 19036, USA.

Background: Bladder pain of unknown etiology has been associated with co-morbid conditions and functional abnormalities in neighboring pelvic organs. Mechanisms underlying pain co-morbidities include cross-sensitization, which occurs predominantly via convergent neural pathways connecting distinct pelvic organs. Our previous results showed that colonic inflammation caused detrusor instability via activation of transient receptor potential vanilloid 1 (TRPV1) signaling pathways, therefore, we aimed to determine whether neurogenic bladder dysfunction can develop in the absence of TRPV1 receptors.

Methods: Adult male C57BL/6 wild-type (WT) and TRPV1-/- (knockout) mice were used in this study. Colonic inflammation was induced by intracolonic trinitrobenzene sulfonic acid (TNBS). The effects of transient colitis on abdominal sensitivity and function of the urinary bladder were evaluated by cystometry, contractility and relaxation of detrusor smooth muscle (DSM) in vitro to various stimuli, gene and protein expression of voltage-gated sodium channels in bladder sensory neurons, and pelvic responses to mechanical stimulation.

Results: Knockout of TRPV1 gene did not eliminate the development of cross-sensitization between the colon and urinary bladder. However, TRPV1-/- mice had prolonged intermicturition interval and increased number of non-voiding contractions at baseline followed by reduced urodynamic responses during active colitis. Contractility of DSM was up-regulated in response to KCl in TRPV1-/- mice with inflamed colon. Application of Rho-kinase inhibitor caused relaxation of DSM in WT but not in TRPV1-/- mice during colonic inflammation. TRPV1-/- mice demonstrated blunted effects of TNBS-induced colitis on expression and function of voltage-gated sodium channels in bladder sensory neurons, and delayed development of abdominal hypersensitivity upon colon-bladder cross-talk in genetically modified animals.

Conclusions: The lack of TRPV1 receptors does not eliminate the development of cross-sensitization in the pelvis. However, the function of the urinary bladder significantly differs between WT and TRPV-/- mice especially upon development of colon-bladder cross-sensitization induced by transient colitis. Our results suggest that TRPV1 pathways may participate in the development of chronic pelvic pain co-morbidities in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1742-2094-10-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556132PMC
January 2013

Spontaneous and evoked contractions are regulated by PKC-mediated signaling in detrusor smooth muscle: involvement of BK channels.

Am J Physiol Renal Physiol 2013 Mar 26;304(5):F451-62. Epub 2012 Dec 26.

Division of Urology, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Protein kinase C (PKC) and large conductance Ca(2+)-activated potassium channels (BK) are downregulated in the detrusor smooth muscle (DSM) in partial bladder outlet obstruction (PBOO). DSM from these bladders display increased spontaneous activity. This study examines the involvement of PKC in the regulation of spontaneous and evoked DSM contractions and whether pharmacologic inhibition of PKC in normal DSM contributes to increased detrusor excitability. Results indicate the PKC inhibitor bisindolylmaleimide 1 (Bim-1) prevented a decline in the amplitude of spontaneous DSM contractions over time in vitro, and these contractions persist in the presence of tetrodotoxin. Bim-1 also reduced the basal DSM tone, and the ability to maintain force in response to electrical field stimulation, but did not affect maximum contraction. The PKC activator phorbol-12,13-dibutyrate (PDBu) significantly reduced the amplitude and increased the frequency of spontaneous contractions at low concentrations (10 nM), while causing an increase in force at higher concentrations (1 μM). Preincubation of DSM strips with iberiotoxin prevented the inhibition of spontaneous contractions by PDBu. The BK channel openers isopimaric acid and NS1619 reduced the Bim-1-induced enhancement of spontaneous contractions in DSM strips. Our data suggest that PKC has a biphasic activation profile in the DSM and that it may play an important role in maintaining the quiescent state of the normal bladder during storage through the effects on BK channel, while helping to maintain force required for bladder emptying. The data also suggest that PKC dysfunction, as seen in PBOO, contributes to detrusor overactivity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00639.2011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602715PMC
March 2013

Bladder smooth muscle organ culture preparation maintains the contractile phenotype.

Am J Physiol Renal Physiol 2012 Nov 15;303(9):F1382-97. Epub 2012 Aug 15.

Dept. of Pharmacology and Physiology, Drexel Univ. College of Medicine, 245 N 15th St., MS 488, Philadelphia, PA 19102, USA.

Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00261.2011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518193PMC
November 2012

Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine⁷⁹⁰ → methionine⁷⁹⁰ mutant.

J Med Chem 2012 Mar 1;55(6):2711-23. Epub 2012 Mar 1.

Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China.

The EGFR(T790M) mutant contributes approximately 50% to clinically acquired resistance against gefitinib or erlotinib. However, almost all the single agent clinical trials of the second generation irreversible EGFR inhibitors appear inadequate to overcome the EGFR(T790M)-related resistance. We have designed and synthesized a series of 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidinyl derivatives as novel EGFR inhibitors. The most potent compounds, 2q and 2s, inhibited the enzymatic activities of wild-type and mutated EGFRs, with IC(50) values in subnanomolar ranges, including the T790M mutants. The kinase inhibitory efficiencies of the compounds were further validated by Western blot analysis of the activation of EGFR and downstream signaling in cancer cells harboring different mutants of EGFR. The compounds also strongly inhibited the proliferation of H1975 non small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to normal cells. Moreover, 2s displayed promising anticancer efficacy in a human NSCLC (H1975) xenograft nude mouse model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm201591kDOI Listing
March 2012

Generation of a human urinary bladder smooth muscle cell line.

In Vitro Cell Dev Biol Anim 2012 Feb 19;48(2):84-96. Epub 2012 Jan 19.

Division of Urology, University of Pennsylvania, Philadelphia, PA, USA.

We report a cell line (hBSM) established from human urinary bladder wall smooth muscle that maintains most of the phenotypic characteristics of smooth muscle cells. Cells were dissociated from the muscular layer with collagenase (1 mg/ml) and collected and grown in M199 supplemented with 10% fetal calf serum and 1% antibiotic-antimycotic. Primary cultures were grown for 2 d and small colonies were isolated by placing glass rings around the colonies. These colonies were picked up with a fine-tipped Pasteur pipette and subcultured. This procedure was repeated several times until a culture with a uniform stable morphology was obtained. hBSM cells are elongated with tapered ends, and in high density cultures, they form swirls of cells arranged in parallel. These cells have a doubling time of approximately 72 h. Western blotting and immunofluorescence microscopy revealed stable expression of smooth muscle-specific proteins, including myosin isoforms (N-terminal isoforms SM-A/B and C-terminal isoforms SM1/2), SM22, α-smooth muscle actin, h-caldesmon, Ca(2+)-dependent myosin light chain kinase, and protein kinase G. These cells contract upon exposure to 10 μM bethanechol and this contraction is reversible by washing away the drug. Karyotyping showed tetraploidy with a modal chromosome number of 87, with multiple rearrangements. To our knowledge, the hBSM cell line is the first human cell line established from bladder wall smooth muscle that expresses both N- and C-terminal smooth muscle myosin isoforms. This cell line will provide a valuable tool for studying transcriptional regulation of smooth muscle myosin isoforms and effects of drugs on cellular function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-011-9473-9DOI Listing
February 2012

New thiazole carboxamides as potent inhibitors of Akt kinases.

Bioorg Med Chem Lett 2012 Jan 30;22(2):1208-12. Epub 2011 Nov 30.

Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Science Park, Guangzhou 510530, China; Graduate School of Chinese Academy of Sciences, # 19 Yuquan Road, Beijing 100049, China.

A new series of 2-substituted thiazole carboxamides were identified as potent pan inhibitors against all three isoforms of Akt (Akt1, Akt2 and Akt3) by systematic optimization of weak screening hit N-(1-amino-3-phenylpropan-2-yl)-2-phenylthiazole-5-carboxamide (1). One of the most potent compounds, 5m, inhibited the kinase activities of Akt1, Akt2 and Akt3 with IC(50) values of 25, 196 and 24nM, respectively. The compound also potently inhibited the phosphorylation of downstream MDM2 and GSK3β proteins, and displayed strongly antiproliferative activity in prostate cancer cells. The inhibitors might serve as lead compounds for further development of novel effective anticancer agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2011.11.080DOI Listing
January 2012

Experimental colitis triggers the release of substance P and calcitonin gene-related peptide in the urinary bladder via TRPV1 signaling pathways.

Exp Neurol 2010 Oct 23;225(2):262-73. Epub 2010 May 23.

Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, PA, USA.

Clinical data provide evidence of high level of co-morbidity among genitourinary and gastrointestinal disorders characterized by chronic pelvic pain. The objective of this study was to test the hypothesis that colonic inflammation can impact the function of the urinary bladder via activation of TRPV1 signaling pathways followed by alterations in gene and protein expression of substance P (SP) and calcitonin gene-related peptide (CGRP) in sensory neurons and in the bladder. Inflammation was induced by intracolonic instillation of trinitrobenzene sulfonic acid (TNBS, 12.5mg/kg), and desensitization of TRPV1 receptors was evoked by intracolonic resiniferatoxin (RTX, 10(-)(7)M). mRNA and protein concentrations of CGRP and SP were measured at 3, 5 and 30 days. RTX instillation in the colon caused 3-fold up-regulation of SP mRNA in the urinary bladder at day 5 (n=7, p ≤ 0.05) followed by 35-fold increase at day 30 (n=5, p ≤ 0.05). Likewise, TNBS colitis triggered 15.8-fold up-regulation of SP mRNA 1 month after TNBS (n=5, p ≤ 0.05). Desensitization of colonic TRPV1 receptors prior to TNBS abolished SP increase in the urinary bladder. RTX led to 4.3-fold increase of CGRP mRNA at day 5 (n=7, p ≤ 0.05 to control) in the bladder followed by 28-fold increase at day 30 post-RTX (n=4, p ≤ 0.05). Colitis did not alter CGRP concentration during acute phase; however, at day 30 mRNA level was increased by 17.8 ± 6.9-fold (n=5, p ≤ 0.05) in parallel with 4-fold increase in CGRP protein (n=5, p ≤ 0.01) in the detrusor. Protein concentration of CGRP in the spinal cord was diminished by 45-65% (p ≤ 0.05) during colitis. RTX pretreatment did not affect CGRP concentration in the urinary bladder; however, it caused a reduction in CGRP release from lumbosacral DRG neurons during acute phase (3 and 5 days post-TNBS). Our results clearly demonstrate that colonic inflammation triggers the release of pro-inflammatory neuropeptides SP and CGRP in the urinary bladder via activation of TRPV1 signaling mechanisms enunciating the neurogenic nature of pelvic organ cross-sensitization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2010.05.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939259PMC
October 2010

Detrusor overactivity is associated with downregulation of large-conductance calcium- and voltage-activated potassium channel protein.

Am J Physiol Renal Physiol 2010 Jun 14;298(6):F1416-23. Epub 2010 Apr 14.

Division of Urology, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Large-conductance voltage- and calcium-activated potassium (BK) channels have been shown to play a role in detrusor overactivity (DO). The goal of this study was to determine whether bladder outlet obstruction-induced DO is associated with downregulation of BK channels and whether BK channels affect myosin light chain 20 (MLC(20)) phosphorylation in detrusor smooth muscle (DSM). Partial bladder outlet obstruction (PBOO) was surgically induced in male New Zealand White rabbits. The rabbit PBOO model shows decreased voided volumes and increased voiding frequency. DSM from PBOO rabbits also show enhanced spontaneous contractions compared with control. Both BK channel alpha- and beta-subunits were significantly decreased in DSM from PBOO rabbits. Immunostaining shows BKbeta mainly expressed in DSM, and its expression is much less in PBOO DSM compared with control DSM. Furthermore, a translational study was performed to see whether the finding discovered in the animal model can be translated to human patients. The urodynamic study demonstrates several overactive DSM contractions during the urine-filling stage in benign prostatic hyperplasia (BPH) patients with DO, while DSM is very quiet in BPH patients without DO. DSM biopsies revealed significantly less BK channel expression at both mRNA and protein levels. The degree of downregulation of the BK beta-subunit was greater than that of the BK alpha-subunit, and the downregulation of BK was only associated with DO, not BPH. Finally, the small interference (si) RNA-mediated downregulation of the BK beta-subunit was employed to study the effect of BK depletion on MLC(20) phosphorylation. siRNA-mediated BK channel reduction was associated with an increased MLC(20) phosphorylation level in cultured DSM cells. In summary, PBOO-induced DO is associated with downregulation of BK channel expression in the rabbit model, and this finding can be translated to human BPH patients with DO. Furthermore, downregulation of the BK channel may contribute to DO by increasing the basal level of MLC(20) phosphorylation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00595.2009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886817PMC
June 2010

siRNA-mediated knockdown of h-caldesmon in vascular smooth muscle.

Am J Physiol Heart Circ Physiol 2009 Nov 18;297(5):H1930-9. Epub 2009 Sep 18.

Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th St., MS #488, Philadelphia, PA 19102, USA.

Smooth muscle contraction involves phosphorylation of the regulatory myosin light chain. However, this thick-filament system of regulation cannot account for all aspects of a smooth muscle contraction. An alternate site of contractile regulation may be in the thin-filament-associated proteins, in particular caldesmon. Caldesmon has been proposed to be an inhibitory protein that acts either as a brake to stop any increase in resting or basal tone, or as a modulatory protein during contraction. The goal of this study was to use short interfering RNA technology to decrease the levels of the smooth muscle-specific isoform of caldesmon in intact vascular smooth muscle tissue to determine more carefully what role(s) caldesmon has in smooth muscle regulation. Intact strips of vascular tissue depleted of caldesmon produced significant levels of shortening velocity, indicative of cross-bridge cycling, in the unstimulated tissue and exhibited lower levels of contractile force to histamine. Our results also suggest that caldesmon does not play a role in the cooperative activation of unphosphorylated cross bridges by phosphorylated cross bridges. The velocity of shortening of the constitutively active tissue and the high basal values of myosin light chain phosphorylation suggest that h-caldesmon in vivo acts as a brake against contractions due to basally phosphorylated myosin. It is also possible that phosphorylation of h-caldesmon alone in the resting state may be a mechanism to produce increases in force without stimulation and increases in calcium. Disinhibition of h-caldesmon by phosphorylation would then allow force to be developed by activated myosin in the resting state.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00129.2009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781382PMC
November 2009

Alteration of the PKC-mediated signaling pathway for smooth muscle contraction in obstruction-induced hypertrophy of the urinary bladder.

Lab Invest 2009 Jul 20;89(7):823-32. Epub 2009 Apr 20.

Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, PA, USA.

Normal urinary bladder function requires contraction and relaxation of the detrusor smooth muscle (DSM). The DSM undergoes compensatory hypertrophy in response to partial bladder outlet obstruction (PBOO) in both men and animal models. Following bladder hypertrophy, the bladder either retains its normal function (compensated) or becomes dysfunctional (decompensated) with increased voiding frequency and decreased void volume. We analyzed the contractile characteristics of DSM in a rabbit model of PBOO. The protein kinase C (PKC) agonist phorbol 12, 13-dibutyrate (PDBu) elicited similar levels of contraction of DSM strips from normal and compensated bladders. However, PDBu-induced contraction decreased significantly in DSM strips from decompensated bladders. The expression and activity of PKC-alpha were also lowest in decompensated bladders. The PKC-specific inhibitor bisindolylmaleimide-1 (Bis) blocked PDBu-induced contraction and PKC activity in all three groups. Moreover, the phosphorylation of the phosphoprotein inhibitor CPI-17 (a 17-kDa PKC-potentiated inhibitory protein of protein phosphatase-1) was diminished in DSM from the decompensated bladder, which would result in less inhibitory potency of CPI-17 on myosin light chain phosphatase activity and contribute to less contractility. Immunostaining revealed the colocalization of PKC and phosphorylated CPI-17 in the DSM and confirmed the decreases of these signaling proteins in the decompensated bladder. Our results show a differential PKC-mediated DSM contraction with corresponding alterations of PKC expression, activity and the phosphorylation of CPI-17. Our finding suggests a significant correlation between bladder function and PKC pathway. An impaired PKC pathway appears to be correlated with severe bladder dysfunction observed in decompensated bladders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2009.38DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702459PMC
July 2009