Publications by authors named "Shankar Iyer"

79 Publications

Proarrhythmic Electrical Remodeling by Noncardiomyocytes at Interfaces With Cardiomyocytes Under Oxidative Stress.

Front Physiol 2020 2;11:622613. Epub 2021 Feb 2.

Division of Cardiology, Department of Medicine, The Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.

Life-threatening ventricular arrhythmias, typically arising from interfaces between fibrosis and surviving cardiomyocytes, are feared sequelae of structurally remodeled hearts under oxidative stress. Incomplete understanding of the proarrhythmic electrical remodeling by fibrosis limits the development of novel antiarrhythmic strategies. To define the mechanistic determinants of the proarrhythmia in electrical crosstalk between cardiomyocytes and noncardiomyocytes, we developed a novel model of interface between neonatal rat ventricular cardiomyocytes (NRVMs) and controls [NRVMs or connexin43 (Cx43)-deficient HeLa cells] vs. Cx43 noncardiomyocytes [aged rat ventricular myofibroblasts (ARVFs) or HeLaCx43 cells]. We performed high-speed voltage-sensitive optical imaging at baseline and following acute HO exposure. In NRVM-NRVM and NRVM-HeLa controls, no arrhythmias occurred under either experimental condition. In the NRVM-ARVF and NRVM-HeLaCx43 groups, Cx43 noncardiomyocytes enabled passive decremental propagation of electrical impulses and impaired NRVM activation and repolarization, thereby slowing conduction and prolonging action potential duration. Following HO exposure, arrhythmia triggers, automaticity, and non-reentrant and reentrant arrhythmias emerged. This study reveals that myofibroblasts (which generate cardiac fibrosis) and other noncardiomyocytes can induce not only structural remodeling but also electrical remodeling and that electrical remodeling by noncardiomyocytes can be particularly arrhythmogenic in the presence of an oxidative burst. Synergistic electrical remodeling between HO and noncardiomyocytes may account for the clinical arrhythmogenicity of myofibroblasts at fibrotic interfaces with cardiomyocytes in ischemic/non-ischemic cardiomyopathies. Understanding the enhanced arrhythmogenicity of synergistic electrical remodeling by HO and noncardiomyocytes may guide novel safe-by-design antiarrhythmic strategies for next-generation iatrogenic interfaces between surviving native cardiomyocytes and exogenous stem cells or engineered tissues in cardiac regenerative therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2020.622613DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884825PMC
February 2021

Microbial Genetics: Stress Management.

Trends Genet 2021 01 27;37(1):1-3. Epub 2020 Nov 27.

Microbes constitute the very core of our existence. Long believed to be a nuisance and proponents of various disease, latest research point toward their functions in processes that can prove beneficial for human survival and afford long-term protection from disease. The wide range of functions exhibited by a host of microbes implies diversity and heterogeneity at the level of the molecular machinery, thus stressing the need to take a closer look at the molecular underpinnings that dictate distinct outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2020.10.012DOI Listing
January 2021

Microbial Genetics: Stress Management.

Trends Microbiol 2021 01 25;29(1):1-3. Epub 2020 Nov 25.

Editor, Trends in Genetics.

Microbes constitute the very core of our existence. Long believed to be a nuisance and proponents of various diseases, latest research point toward their functions in processes that can prove beneficial for human survival and afford long-term protection from disease. The wide range of functions exhibited by a host of microbes implies diversity and heterogeneity at the level of the molecular machinery, thus stressing the need to take a closer look at the molecular underpinnings that dictate distinct outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tim.2020.10.015DOI Listing
January 2021

Senescent cells promote tissue NAD decline during ageing via the activation of CD38 macrophages.

Nat Metab 2020 11 16;2(11):1265-1283. Epub 2020 Nov 16.

Buck Institute for Research on Aging, Novato, CA, USA.

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42255-020-00305-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7908681PMC
November 2020

Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma.

Biofactors 2021 Mar 24;47(2):190-197. Epub 2020 Oct 24.

Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA.

Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/biof.1687DOI Listing
March 2021

Acute Traumatic Brain Injury-Induced Neuroinflammatory Response and Neurovascular Disorders in the Brain.

Neurotox Res 2021 Apr 21;39(2):359-368. Epub 2020 Sep 21.

Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.

Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-β) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-β, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-020-00288-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502806PMC
April 2021

Real-Time Noninvasive Bioluminescence, Ultrasound and Photoacoustic Imaging in NFκB-RE-Luc Transgenic Mice Reveal Glia Maturation Factor-Mediated Immediate and Sustained Spatio-Temporal Activation of NFκB Signaling Post-Traumatic Brain Injury in a Gender-Specific Manner.

Cell Mol Neurobiol 2020 Aug 12. Epub 2020 Aug 12.

Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.

Neurotrauma especially traumatic brain injury (TBI) is the leading cause of death and disability worldwide. To improve upon the early diagnosis and develop precision-targeted therapies for TBI, it is critical to understand the underlying molecular mechanisms and signaling pathways. The transcription factor, nuclear factor kappa B (NFκB), which is ubiquitously expressed, plays a crucial role in the normal cell survival, proliferation, differentiation, function, as well as in disease states like neuroinflammation and neurodegeneration. Here, we hypothesized that real-time noninvasive bioluminescence molecular imaging allows rapid and precise monitoring of TBI-induced immediate and rapid spatio-temporal activation of NFκB signaling pathway in response to Glia maturation factor (GMF) upregulation which in turn leads to neuroinflammation and neurodegeneration post-TBI. To test and validate our hypothesis and to gain novel mechanistic insights, we subjected NFκB-RE-Luc transgenic male and female mice to TBI and performed real-time noninvasive bioluminescence imaging (BLI) as well as photoacoustic and ultrasound imaging (PAI). Our BLI data revealed that TBI leads to an immediate and sustained activation of NFκB signaling. Further, our BLI data suggest that especially in male NFκB-RE-Luc transgenic mice subjected to TBI, in addition to brain, there is widespread activation of NFκB signaling in multiple organs. However, in the case of the female NFκB-RE-Luc transgenic mice, TBI induces a very specific and localized activation of NFκB signaling in the brain. Further, our microRNA data suggest that TBI induces significant upregulation of mir-9-5p, mir-21a-5p, mir-34a-5p, mir-16-3p, as well as mir-155-5p within 24 h and these microRNAs can be successfully used as TBI-specific biomarkers. To the best of our knowledge, this is one of the first and unique study of its kind to report immediate and sustained activation of NFκB signaling post-TBI in a gender-specific manner by utilizing real-time non-invasive BLI and PAI in NFκB-RE-Luc transgenic mice. Our study will prove immensely beneficial to gain novel mechanistic insights underlying TBI, unravel novel therapeutic targets, as well as enable us to monitor in real-time the response to innovative TBI-specific precision-targeted gene and stem cell-based precision medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-020-00937-9DOI Listing
August 2020

Current Trends in Biomarkers for Traumatic Brain Injury.

Open Access J Neurol Neurosurg 2020 8;12(4):86-94. Epub 2020 Jan 8.

Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.

Neurotrauma, especially Traumatic Brain Injury (TBI) is a major health concern not only for the civilian population but also for the military personnel. Currently there are no precision and regenerative therapies available for the successful treatment of TBI patients. Hence, early detection and treatment options may prevent the severity and untoward harmful effects of TBI. However, currently there are no effective biomarkers available for the rapid and robust diagnosis as well as prognosis of TBI. Several biomarkers in blood, cerebrospinal fluid (CSF), saliva and urine have been explored to assess the onset, progression, severity and prognosis of TBI recently. Present knowledge on the blood biomarkers including cytokines and chemokines and in vivo imaging modalities are useful to some extent to detect and treat TBI patients. Here, we review S100B, Glial Fibrillary Acidic Protein (GFAP), Neuron Specific Enolase (NSE), Myelin Basic Protein (MBP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), tau protein, and alpha spectrin II break down products regarding their usefulness as a set of reliable biomarkers for the robust diagnosis of TBI. We suggest that these biomarkers may prove very useful for the diagnosis and prognosis of TBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410004PMC
January 2020

Glia Maturation Factor (GMF) Regulates Microglial Expression Phenotypes and the Associated Neurological Deficits in a Mouse Model of Traumatic Brain Injury.

Mol Neurobiol 2020 Nov 31;57(11):4438-4450. Epub 2020 Jul 31.

Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.

Traumatic brain injury (TBI) induces inflammatory responses through microglial activation and polarization towards a more inflammatory state that contributes to the deleterious secondary brain injury. Glia maturation factor (GMF) is a pro-inflammatory protein that is responsible for neuroinflammation following insult to the brain, such as in TBI. We hypothesized that the absence of GMF in GMF-knockout (GMF-KO) mice would regulate microglial activation state and the M1/M2 phenotypes following TBI. We used the weight drop model of TBI in C57BL/6 mice wild-type (WT) and GMF-KO mice. Immunofluorescence staining, Western blot, and ELISA assays were performed to confirm TBI-induced histopathological and neuroinflammatory changes. Behavioral analysis was done to check motor coordination ability and cognitive function. We demonstrated that the deletion of GMF in GMF-KO mice significantly limited lesion volume, attenuated neuronal loss, inhibited gliosis, and activated microglia adopted predominantly anti-inflammatory (M2) phenotypes. Using an ELISA method, we found a gradual decrease in pro-inflammatory cytokines (TNF-α and IL-6) and upregulation of anti-inflammatory cytokines (IL-4 and IL-10) in GMF-KO mice compared with WT mice, thus, promoting the transition of microglia towards a more predominantly anti-inflammatory (M2) phenotype. GMF-KO mice showed significant improvement in motor ability, memory, and cognition. Overall, our results demonstrate that GMF deficiency regulates microglial polarization, which ameliorates neuronal injury and behavioral impairments following TBI in mice and concludes that GMF is a regulator of neuroinflammation and an ideal therapeutic target for the treatment of TBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-020-02040-yDOI Listing
November 2020

Mast Cell Activation, Neuroinflammation, and Tight Junction Protein Derangement in Acute Traumatic Brain Injury.

Mediators Inflamm 2020 24;2020:4243953. Epub 2020 Jun 24.

Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.

Traumatic brain injury (TBI) is one of the major health problems worldwide that causes death or permanent disability through primary and secondary damages in the brain. TBI causes primary brain damage and activates glial cells and immune and inflammatory cells, including mast cells in the brain associated with neuroinflammatory responses that cause secondary brain damage. Though the survival rate and the neurological deficiencies have shown significant improvement in many TBI patients with newer therapeutic options, the underlying pathophysiology of TBI-mediated neuroinflammation, neurodegeneration, and cognitive dysfunctions is understudied. In this study, we analyzed mast cells and neuroinflammation in weight drop-induced TBI. We analyzed mast cell activation by toluidine blue staining, serum chemokine C-C motif ligand 2 (CCL2) level by enzyme-linked immunosorbent assay (ELISA), and proteinase-activated receptor-2 (PAR-2), a mast cell and inflammation-associated protein, vascular endothelial growth factor receptor 2 (VEGFR2), and blood-brain barrier tight junction-associated claudin 5 and Zonula occludens-1 (ZO-1) protein expression in the brains of TBI mice. Mast cell activation and its numbers increased in the brains of 24 h and 72 h TBI when compared with sham control brains without TBI. Mouse brains after TBI show increased CCL2, PAR-2, and VEGFR2 expression and derangement of claudin 5 and ZO-1 expression as compared with sham control brains. TBI can cause mast cell activation, neuroinflammation, and derangement of tight junction proteins associated with increased BBB permeability. We suggest that inhibition of mast cell activation can suppress neuroimmune responses and glial cell activation-associated neuroinflammation and neurodegeneration in TBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2020/4243953DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333064PMC
June 2020

COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation.

Neuroscientist 2020 Oct-Dec;26(5-6):402-414. Epub 2020 Jul 18.

Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1073858420941476DOI Listing
October 2020

Absence of Glia Maturation Factor Protects from Axonal Injury and Motor Behavioral Impairments after Traumatic Brain Injury.

Exp Neurobiol 2020 Jun;29(3):230-248

Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.

Traumatic brain injury (TBI) causes disability and death, accelerating the progression towards Alzheimer's disease and Parkinson's disease (PD). TBI causes serious motor and cognitive impairments, as seen in PD that arise during the period of the initial insult. However, this has been understudied relative to TBI induced neuroinflammation, motor and cognitive decline that progress towards PD. Neuronal ubiquitin-C-terminal hydrolase- L1 (UCHL1) is a thiol protease that breaks down ubiquitinated proteins and its level represents the severity of TBI. Previously, we demonstrated the molecular action of glia maturation factor (GMF); a proinflammatory protein in mediating neuroinflammation and neuronal loss. Here, we show that the weight drop method induced TBI neuropathology using behavioral tests, western blotting, and immunofluorescence techniques on sections from wild type (WT) and GMF-deficient (GMF-KO) mice. Results reveal a significant improvement in substantia nigral tyrosine hydroxylase and dopamine transporter expression with motor behavioral performance in GMF-KO mice following TBI. In addition, a significant reduction in neuroinflammation was manifested, as shown by activation of nuclear factor-kB, reduced levels of inducible nitric oxide synthase, and cyclooxygenase- 2 expressions. Likewise, neurotrophins including brain-derived neurotrophic factor and glial-derived neurotrophic factor were significantly improved in GMF-KO mice than WT 72 h post-TBI. Consistently, we found that TBI enhances GFAP and UCHL-1 expression and reduces the number of dopaminergic TH-positive neurons in WT compared to GMF-KO mice 72 h post-TBI. Interestingly, we observed a reduction of THpositive tanycytes in the median eminence of WT than GMF-KO mice. Overall, we found that absence of GMF significantly reversed these neuropathological events and improved behavioral outcome. This study provides evidence that PD-associated pathology progression can be initiated upon induction of TBI.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5607/en20017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344375PMC
June 2020

Immune Suppression of Glia Maturation Factor Reverses Behavioral Impairment, Attenuates Amyloid Plaque Pathology and Neuroinflammation in an Alzheimer's Disease Mouse Model.

J Neuroimmune Pharmacol 2020 Jun 5. Epub 2020 Jun 5.

Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.

Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disorder recognized by accumulation of amyloid-plaques (APs) and neurofibrillary tangles (NFTs) and eventually loss of memory. Glia maturation factor (GMF), a neuroinflammatory protein first time isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. However, no studies have been reported on whether anti-GMF antibody administration could downregulate neuroinflammation and attenuate amyloid pathology in AD brain. We investigated the potential effect of single dose of (2 mg/kg b.wt/mouse) intravenously (iv) injected with anti-GMF antibodyon cognitive function, neuroprotection, neuroinflammation and Aβ load in the brain of 9-month-old 5XFAD mice. Following 4 weeks of anti-GMF antibody delivery in mice, we found reduced expression of GMF, astrocytic glial fibrillary acidic protein (GFAP) and microglial ionizing calcium binding adaptor molecule 1 (Iba1) as well as improvement inneuroinflammatory response via inhibition of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) production and amyloid pathology in the cerebral cortex and hippocampal CA1 region of 5XFAD mice. Correspondingly, blockade of GMF function with anti-GMF antibody improved spatial learning, memory, and long-term recognition memory in 5XFAD mice. The present study demonstrates that the immune checkpoint blockade of GMF function with anti-GMF antibody coordinates anti-inflammatory effects to attenuate neurodegeneration in the cortex and hippocampal CA1 region of 5XFAD mouse brain. Further, our data suggest, that pharmacological immune neutralization of GMF is a promising neuroprotective strategy totherapeutically target neuroinflammation and neurodegeneration in AD. Graphical Abstract 5XFAD mice Polyclonal anti-GMF antibody.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11481-020-09929-4DOI Listing
June 2020

NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson's disease.

Int Immunopharmacol 2020 Jun 4;83:106441. Epub 2020 Apr 4.

Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Division of Rehabilitation Sciences and Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:

Neuroinflammation plays an active role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD). Earlier studies from this laboratory showed that glia maturation factor (GMF), a proinflammatory mediator; is up-regulated in the brain in neurodegenerative diseases and that deficiency of GMF showed decreased production of IL-1β and improved behavioral abnormalities in mouse model of PD. However, the mechanisms linking GMF and dopaminergic neuronal death have not been completely explored. In the present study, we have investigated the expression of NLRP3 inflammasome and caspase-1 in the substantia nigra (SN) of human PD and non-PD brains by immunohistochemistry. Wild-type (WT) and GMF (GMF knock-out) mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) and the brains were isolated for neurochemical and morphological examinations. NLRP3 and caspase-1 positive cells were found significantly increased in PD when compared to non-PD control brains. Moreover, GMF co-localized with α-Synuclein within reactive astrocytes in the midbrain of PD. Mice treated with MPTP exhibit glial activation-induced inflammation, and nigrostriatal dopaminergic neurodegeneration. Interestingly, increased expression of the inflammasome components in astrocytes and microglia observed in the SN of MPTP-treated WT mice were significantly reduced in GMF mice. Additionally, we show that NLRP3 activation in microglia leads to translocation of GMF and NLRP3 to the mitochondria. We conclude that downregulation of GMF may have beneficial effects in prevention of PD by modulating the cytotoxic functions of microglia and astrocytes through reduced activation of the NLRP3 inflammasome; a major contributor of neuroinflammation in the CNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2020.106441DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255416PMC
June 2020

Neuroinflammation Mediated by Glia Maturation Factor Exacerbates Neuronal Injury in an Model of Traumatic Brain Injury.

J Neurotrauma 2020 07 17;37(14):1645-1655. Epub 2020 Apr 17.

Department of Neurology and School of Medicine, University of Missouri, Columbia, Missouri, USA.

Traumatic brain injury (TBI) is the primary cause of death and disability affecting over 10 million people in the industrialized world. TBI causes a wide spectrum of secondary molecular and cellular complications in the brain. However, the pathological events are still not yet fully understood. Previously, we have shown that the glia maturation factor (GMF) is a mediator of neuroinflammation in neurodegenerative diseases. To identify the potential molecular pathways accompanying TBI, we used an cell culture model of TBI. A standardized injury was induced by scalpel cut through a mixed primary cell culture of astrocytes, microglia and neurons obtained from both wild type (WT) and GMF-deficient (GMF-KO) mice. Cell culture medium and whole-cell lysates were collected at 24, 48, and 72 h after the scalpel cuts injury and probed for oxidative stress using immunofluorescence analysis. Results showed that oxidative stress markers such as glutathione and glutathione peroxidase were significantly reduced, while release of cytosolic enzyme lactate dehydrogenase along with nitric oxide and prostaglandin E2 were significantly increased in injured WT cells compared with injured GMF-KO cells. In addition, injured WT cells showed increased levels of oxidation product 4-hydroxynonenal and 8-oxo-2'-deoxyguanosine compared with injured GMF-KO cells. Further, we found that injured WT cells showed a significantly increased expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and phosphorylated ezrin/radixin/moesin proteins, and reduced microtubule associated protein expression compared with injured GMF-KO cells after injury. Collectively, our results demonstrate that GMF exacerbates the oxidative stress-mediated neuroinflammation that could be brought about by TBI-induced astroglial activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2019.6932DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336883PMC
July 2020

Psychological Stress-Induced Immune Response and Risk of Alzheimer's Disease in Veterans from Operation Enduring Freedom and Operation Iraqi Freedom.

Clin Ther 2020 06 14;42(6):974-982. Epub 2020 Mar 14.

Harry S. Truman Memorial Veterans Hospital, US Department of Veterans Affairs, Columbia, MO, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA; Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA. Electronic address:

Purpose: Psychological stress is a significant health problem in veterans and their family members. Traumatic brain injury (TBI) and stress lead to the onset, progression, and worsening of several inflammatory and neurodegenerative diseases in veterans and civilians. Alzheimer's disease (AD) is a progressive, irreversible neuroinflammatory disease that causes problems with memory, thinking, and behavior. TBIs and chronic psychological stress cause and accelerate the pathology of neuroinflammatory diseases such as AD. However, the precise molecular and cellular mechanisms governing neuroinflammation and neurodegeneration are currently unknown, especially in veterans. The purpose of this review article was to advance the hypothesis that stress and TBI-mediated immune response substantially contribute and accelerate the pathogenesis of AD in veterans and their close family members and civilians.

Methods: The information in this article was collected and interpreted from published articles in PubMed between 1985 and 2020 using the key words stress, psychological stress, Afghanistan war, Operation Enduring Freedom (OEF), Iraq War, Operation Iraqi Freedom (OIF), Operation New Dawn (OND), traumatic brain injury, mast cell and stress, stress and neuroimmune response, stress and Alzheimer's disease, traumatic brain injury, and Alzheimer's disease.

Findings: Chronic psychological stress and brain injury induce the generation and accumulation of beta-amyloid peptide, amyloid plaques, neurofibrillary tangles, and phosphorylation of tau in the brain, thereby contributing to AD pathogenesis. Active military personnel and veterans are under enormous psychological stress due to various war-related activities, including TBIs, disabilities, fear, new environmental conditions, lack of normal life activities, insufficient communications, explosions, military-related noise, and health hazards. Brain injury, stress, mast cell, and other immune cell activation can induce headache, migraine, dementia, and upregulate neuroinflammation and neurodegeneration in veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn. TBIs, posttraumatic stress disorder, psychological stress, pain, glial activation, and dementia in active military personnel, veterans, or their family members can cause AD several years later in their lives. We suggest that there are increasing numbers of veterans with TBIs and stress and that these veterans may develop AD late in life if no appropriate therapeutic intervention is available.

Implications: Per these published reports, the fact that TBIs and psychological stress can accelerate the pathogenesis of AD should be recognized. Active military personnel, veterans, and their close family members should be evaluated regularly for stress symptoms to prevent the pathogenesis of neurodegenerative diseases, including AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinthera.2020.02.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7308186PMC
June 2020

Transcriptional regulation by σ factor phosphorylation in bacteria.

Nat Microbiol 2020 03 27;5(3):395-406. Epub 2020 Jan 27.

Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

A major form of transcriptional regulation in bacteria occurs through the exchange of the primary σ factor of RNA polymerase (RNAP) with an alternative extracytoplasmic function (ECF) σ factor. ECF σ factors are generally intrinsically active and are retained in an inactive state via the sequestration into σ factor-anti-σ factor complexes until their action is warranted. Here, we report a previously uncharacterized mechanism of transcriptional regulation that relies on intrinsically inactive ECF σ factors, the activation of which and interaction with the β'-subunit of RNAP depends on σ factor phosphorylation. In Vibrio parahaemolyticus, the threonine kinase PknT phosphorylates the σ factor EcfP, which results in EcfP activation and expression of an essential polymyxin-resistant regulon. EcfP phosphorylation occurs at a highly conserved threonine residue, Thr63, positioned within a divergent region in the σ2.2 helix. Our data indicate that EcfP is intrinsically inactive and unable to bind the β'-subunit of RNAP due to the absence of a negatively charged DAED motif in this region. Furthermore, our results indicate that phosphorylation at residue Thr63 mimics this negative charge and licenses EcfP to interact with the β'-subunit in the formation of the RNAP holoenzyme, which in turn results in target gene expression. This regulatory mechanism is a previously unrecognized paradigm in bacterial signal transduction and transcriptional regulation, and our data suggest that it is widespread in bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41564-019-0648-6DOI Listing
March 2020

A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice.

Brain Behav Immun 2020 07 23;87:429-443. Epub 2020 Jan 23.

Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States; Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States. Electronic address:

The molecular mechanism mediating degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) is not yet fully understood. Previously, we have shown the contribution of glia maturation factor (GMF), a proinflammatory protein in dopaminergic neurodegeneration mediated by activation of mast cells (MCs). In this study, methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal neurodegeneration and astro-glial activations were determined by western blot and immunofluorescence techniques in wild type (WT) mice, MC-deficient (MC-KO) mice and GMF-deficient (GMF-KO) mice, with or without MC reconstitution before MPTP administration. We show that GMF-KO in the MCs reduces the synergistic effects of MC and Calpain1 (calcium-activated cysteine protease enzyme)-dependent dopaminergic neuronal loss that reduces motor behavioral impairments in MPTP-treated mouse. Administration of MPTP increase in calpain-mediated proteolysis in nigral dopaminergic neurons further resulting in motor decline in mice. We found that MPTP administered WT mice exhibits oxidative stress due to significant increases in the levels of malondialdehyde, superoxide dismutase and reduction in the levels of reduced glutathione and glutathione peroxidase activity as compared with both MC-KO and GMF-KO mice. The number of TH-positive neurons in the ventral tegmental area, substantia nigra and the fibers in the striatum were significantly reduced while granulocyte macrophage colony-stimulating factor (GM-CSF), MC-Tryptase, GFAP, IBA1, Calpain1 and intracellular adhesion molecule 1 expression were significantly increased in WT mice. Similarly, tyrosine hydroxylase, dopamine transporters and vesicular monoamine transporters 2 proteins expression were significantly reduced in the SN of MPTP treated WT mice. The motor behavior as analyzed by rotarod and hang test was significantly reduced in WT mice as compared with both the MC-KO and GMF-KO mice. We conclude that GMF-dependent MC activation enhances the detrimental effect of astro-glial activation-mediated oxidative stress and neuroinflammation in the midbrain, and its inhibition may slowdown the progression of PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2020.01.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316620PMC
July 2020

Sterile activation of invariant natural killer T cells by ER-stressed antigen-presenting cells.

Proc Natl Acad Sci U S A 2019 11 5;116(47):23671-23681. Epub 2019 Nov 5.

Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom;

Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1910097116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6876220PMC
November 2019

Brain Injury-Mediated Neuroinflammatory Response and Alzheimer's Disease.

Neuroscientist 2020 04 16;26(2):134-155. Epub 2019 May 16.

Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.

Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1177/1073858419848293DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274851PMC
April 2020

Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders.

J Neuroimmune Pharmacol 2019 12 23;14(4):608-641. Epub 2019 Apr 23.

Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.

Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11481-019-09849-yDOI Listing
December 2019

Synergy in Disruption of Mitochondrial Dynamics by Aβ (1-42) and Glia Maturation Factor (GMF) in SH-SY5Y Cells Is Mediated Through Alterations in Fission and Fusion Proteins.

Mol Neurobiol 2019 Oct 4;56(10):6964-6975. Epub 2019 Apr 4.

Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA.

The pathological form of amyloid beta (Aβ) peptide is shown to be toxic to the mitochondria and implicates this organelle in the progression and pathogenesis of Alzheimer's disease (AD). Mitochondria are dynamic structures constantly undergoing fission and fusion, and altering their shape and size while traveling through neurons. Mitochondrial fission (Drp1, Fis1) and fusion (OPA1, Mfn1, and Mfn2) proteins are balanced in healthy neuronal cells. Glia maturation factor (GMF), a neuroinflammatory protein isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. We hypothesized that GMF, a brain-localized inflammatory protein, promotes oxidative stress-mediated disruption of mitochondrial dynamics by alterations in mitochondrial fission and fusion proteins which eventually leads to apoptosis in the Aβ (1-42)-treated human neuroblastoma (SH-SY5Y) cells. The SH-SY5Y cells were incubated with GMF and Aβ (1-42) peptide, and mitochondrial fission and fusion proteins were analyzed by immunofluorescence, western blotting, and co-immunoprecipitation. We report that SH-SY5Y cells incubated with GMF and Aβ (1-42) promote mitochondrial fragmentation, by potentiating oxidative stress, mitophagy and shifts in the Bax/Bcl2 expression and release of cytochrome-c, and eventual apoptosis. In the present study, we show that GMF and Aβ treatments significantly upregulate fission proteins and downregulate fusion proteins. The study shows that extracellular GMF is an important inflammatory mediator that mediates mitochondrial dynamics by altering the balance in fission and fusion proteins and amplifies similar effects promoted by Aβ. Upregulated GMF in the presence of Aβ could be an additional risk factor for AD, and their synergistic actions need to be explored as a potential therapeutic target to suppress the progression of AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-019-1544-zDOI Listing
October 2019

SLAM-ing the brakes on iNKT cell selection.

Nat Immunol 2019 04;20(4):378-379

Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41590-019-0355-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6444350PMC
April 2019

Mast Cells in Stress, Pain, Blood-Brain Barrier, Neuroinflammation and Alzheimer's Disease.

Front Cell Neurosci 2019 19;13:54. Epub 2019 Feb 19.

Harry S. Truman Memorial Veterans' Hospital (VA), U.S. Department of Veterans Affairs, Columbia, MO, United States.

Mast cell activation plays an important role in stress-mediated disease pathogenesis. Chronic stress cause or exacerbate aging and age-dependent neurodegenerative diseases. The severity of inflammatory diseases is worsened by the stress. Mast cell activation-dependent inflammatory mediators augment stress associated pain and neuroinflammation. Stress is the second most common trigger of headache due to mast cell activation. Alzheimer's disease (AD) is a progressive irreversible neurodegenerative disease that affects more women than men and woman's increased susceptibility to chronic stress could increase the risk for AD. Modern life-related stress, social stress, isolation stress, restraint stress, early life stress are associated with an increased level of neurotoxic beta amyloid (Aβ) peptide. Stress increases cognitive dysfunction, generates amyloid precursor protein (APP), hyperphosphorylated tau, neurofibrillary tangles (NFTs), and amyloid plaques (APs) in the brain. Stress-induced Aβ persists for years and generates APs even several years after the stress exposure. Stress activates hypothalamic-pituitary adrenal (HPA) axis and releases corticotropin-releasing hormone (CRH) from hypothalamus and in peripheral system, which increases the formation of Aβ, tau hyperphosphorylation, and blood-brain barrier (BBB) disruption in the brain. Mast cells are implicated in nociception and pain. Mast cells are the source and target of CRH and other neuropeptides that mediate neuroinflammation. Microglia express receptor for CRH that mediate neurodegeneration in AD. However, the exact mechanisms of how stress-mediated mast cell activation contribute to the pathogenesis of AD remains elusive. This mini-review highlights the possible role of stress and mast cell activation in neuroinflammation, BBB, and tight junction disruption and AD pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2019.00054DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389675PMC
February 2019

CRISPR/Cas9 Editing of Glia Maturation Factor Regulates Mitochondrial Dynamics by Attenuation of the NRF2/HO-1 Dependent Ferritin Activation in Glial Cells.

J Neuroimmune Pharmacol 2019 12 27;14(4):537-550. Epub 2019 Feb 27.

Harry S. Truman Memorial Veteans Hospital, Columbia, MO, USA.

Microglial cells are brain specific professional phagocytic immune cells that play a crucial role in the inflammation- mediated neurodegeneration especially in Parkinson's disease (PD) and Alzheimer's disease. Glia maturation factor (GMF) is a neuroinflammatory protein abundantly expressed in the brain. We have previously shown that GMF expression is significantly upregulated in the substantia nigra (SN) of PD brains. However, its possible role in PD progression is still not fully understood. The Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) protein9 (CRISPR/Cas9) system is a simple, rapid and often extremely efficient gene editing tool at desired loci, enabling complete gene knockout or homology directed repair. In this study, we examined the effect of GMF editing by using the CRISPR/Cas9 technique in BV2 microglial cells (hereafter referred to as BV2-G) on oxidative stress and nuclear factor erythroid 2-related factor 2 (NRF2)/Hemeoxygenase1 (HO-1)-dependent ferritin activation after treatment with (1-methyl-4-phenylpyridinium) MPP. Knockout of GMF in BV2-G cells significantly attenuated oxidative stress via reduced ROS production and calcium flux. Furthermore, deficiency of GMF significantly reduced nuclear translocation of NRF2, which modulates HO-1 and ferritin activation, cyclooxygenase 2 (COX2) and nitric oxide synthase 2 (NOS2) expression in BV2 microglial cells. Lack of GMF significantly improved CD11b and CD68 positive microglial cells as compared with untreated cells. Our results also suggest that pharmacological and genetic intervention targeting GMF may represent a promising and a novel therapeutic strategy in controlling Parkinsonism by regulating microglial functions. Targeted regulation of GMF possibly mediates protein aggregation in microglial homeostasis associated with PD progression through regulation of iron metabolism by modulating NRF2-HO1 and ferritin expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11481-019-09833-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711834PMC
December 2019

Glia Maturation Factor in the Pathogenesis of Alzheimer's disease.

Open Access J Neurol Neurosurg 2019 17;12(3):79-82. Epub 2019 Dec 17.

Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.

Alzheimer's disease (AD) is a neurodegenerative and neuroinflammatory disease characterized by the presence of extracellular amyloid plaques (APs) and intracellular neurofibrillary tangles (NFTs) in the brain. There is no disease modifying therapeutic options currently available for this disease. Hippocampus, entorhinal cortex (Broadmann area 28), perirhinal cortex (Broadmann area 35) and insular cortices are areas within the brain that are first ones to be severely affected in AD. Neuroinflammation is an important factor that induces neurodegeneration in AD. Glia maturation factor (GMF), a proinflammatory factor plays a crucial role in AD through activation of microglia and astrocytes to release proinflammatory mediators in the brain. Through immunohistochemical studies, we have previously shown that GMF is highly expressed in the vicinity of APs and NFTs in AD brains. Glial fibrillary acidic protein (GFAP), reactive astrocytes, ionized calcium binding adaptor molecule-1 (Iba-1) labelled activated microglia and GMF immunoreactive glial cells are increased in the entorhinal cortical layers especially at the sites of APs and Tau containing NFTs indicating a role for GMF. Overexpression of GMF in glial cells leads to neuroinflammation and neurodegeneration. Inhibition of GMF expression reduces neurodegeneration. Therefore, we suggest that GMF is a novel therapeutic target not only for AD but also for various other neurodegenerative diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413177PMC
December 2019

Is it safe to treat cerebral venous thrombosis with oral rivaroxaban without heparin? A preliminary study from 20 patients.

Clin Neurol Neurosurg 2018 12 31;175:108-111. Epub 2018 Oct 31.

Department of Radiology, KG Hospital & Post Graduate Medical Institute, Coimbatore, Tamil Nadu, India.

Objectives: Newer oral anticoagulants like rivaroxaban are increasingly becoming the mainstay of treatment in systemic thrombosis. However cerebral venous thrombosis (CVT) is conventionally treated with heparin followed by oral vitamin K antagonists. Currently very little information is available about the use of rivaroxaban in CVT. Rivaroxaban has been used only after the initial treatment with heparin in the available studies.

Patients & Methods: All patients with CVT between January 2017 and June 2017 were initiated directly on oral rivaroxaban. Critically ill patients including those requiring surgical intervention were excluded. The modified Rankin scale was used to assess clinical severity and a scale of 0-1 was defined as excellent outcome. Recanalization was assessed at 3 months follow-up with MR angiography. Complications of the drug including bleeding episodes during treatment and at follow-up were noted.

Results: Twenty patients were initiated on rivaroxaban and followed up for a mean duration of 6 months. Eighty percent (16/20) were males and the mean age was 34.1 years. Associated cerebral hemorrhagic infarcts were seen in 11(55%).Outcome was excellent in 19(95%). Complete recanalization was noted in 12(60%) and partial recanalization in 8(40%). No complications emerged out of the drug use.

Conclusions: In clinically stable CVT rivaroxaban is safe and effective and may be used without previous heparin therapy. This can shorten the duration of hospitalization thereby decreasing the costs of treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clineuro.2018.10.015DOI Listing
December 2018

Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation.

J Alzheimers Dis 2018 ;66(3):1117-1129

Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.

Parkinson's disease (PD) is characterized by the presence of inflammation-mediated dopaminergic neurodegeneration in the substantia nigra. Inflammatory mediators from activated microglia, astrocytes, neurons, T-cells and mast cells mediate neuroinflammation and neurodegeneration. Administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induces PD like motor deficits in rodents. 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP activates glial cells, neurons and mast cells to release neuroinflammatory mediators. Glia maturation factor (GMF), mast cells and proteinase activated receptor-2 (PAR-2) are implicated in neuroinflammation. Alpha-synuclein which induces neurodegeneration increases PAR-2 expression in the brain. However, the exact mechanisms are not yet understood. In this study, we quantified inflammatory mediators in the brains of MPTP-administered wild type (Wt), GMF-knockout (GMF-KO), and mast cell knockout (MC-KO) mice. Additionally, we analyzed the effect of MPP+, GMF, and mast cell proteases on PAR-2 expression in astrocytes and neurons in vitro. Results show that the levels of interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and the chemokine (C-C motif) ligand 2 (CCL2) were lesser in the brains of GMF-KO mice and MC-KO mice when compared to Wt mice brain after MPTP administration. Incubation of astrocytes and neurons with MPP+, GMF, and mouse mast cell protease-6 (MMCP-6) and MMCP-7 increased the expression of PAR-2. Our studies show that the absence of mast cells and GMF reduce the expression of neuroinflammatory mediators in the brain. We conclude that GMF along with mast cell interactions with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD and other neuroinflammatory disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-180786DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334644PMC
November 2019

Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation.

Mol Neurobiol 2019 Jun 14;56(6):3865-3881. Epub 2018 Sep 14.

Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.

Parkinson's disease (PD) is one of the several neurodegenerative diseases where accumulation of aggregated proteins like α-synuclein occurs. Dysfunction in autophagy leading to this protein build-up and subsequent dopaminergic neurodegeneration may be one of the causes of PD. The mechanisms that impair autophagy remain poorly understood. 1-Methyl-4-phenylpiridium ion (MPP) is a neurotoxin that induces experimental PD in vitro. Our studies have shown that glia maturation factor (GMF), a brain-localized inflammatory protein, induces dopaminergic neurodegeneration in PD and that suppression of GMF prevents MPP-induced loss of dopaminergic neurons. In the present study, we demonstrate a molecular action of GMF on the autophagic machinery resulting in dopaminergic neuronal loss and propose GMF-mediated autophagic dysfunction as one of the contributing factors in PD progression. Using dopaminergic N27 neurons, primary neurons from wild type (WT), and GMF-deficient (GMF-KO) mice, we show that GMF and MPP enhanced expression of MAPKs increased the mammalian target of rapamycin (mTOR) activation and endoplasmic reticulum stress markers such as phospho-eukaryotic translation initiation factor 2 alpha kinase 3 (p-PERK) and inositol-requiring enzyme 1α (IRE1α). Further, GMF and MPP reduced Beclin 1, focal adhesion kinase (FAK) family-interacting protein of 200 kD (FIP200), and autophagy-related proteins (ATGs) 3, 5, 7, 16L, and 12. The combined results demonstrate that GMF affects autophagy through autophagosome formation with significantly reduced lysosomal-associated membrane protein 1/2, and the number of autophagic acidic vesicles. Using primary neurons, we show that MPP treatment leads to differential expression and localization of p62/sequestosome and in GMF-KO neurons, there was a marked increase in p62 staining implying autophagy deficiency with very little co-localization of α-synuclein and p62 as compared with WT neurons. Collectively, this study provides a bidirectional role for GMF in executing dopaminergic neuronal death mediated by autophagy that is relevant to PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-1340-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417980PMC
June 2019