Publications by authors named "Shaima Salman"

14 Publications

  • Page 1 of 1

HIF-1α and HIF-2α redundantly promote retinal neovascularization in patients with ischemic retinal disease.

J Clin Invest 2021 Jun;131(12)

Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Therapies targeting VEGF have proven only modestly effective for the treatment of proliferative sickle cell retinopathy (PSR), the leading cause of blindness in patients with sickle cell disease. Here, we shift our attention upstream from the genes that promote retinal neovascularization (NV) to the transcription factors that regulate their expression. We demonstrated increased expression of HIF-1α and HIF-2α in the ischemic inner retina of PSR eyes. Although both HIFs participated in promoting VEGF expression by hypoxic retinal Müller cells, HIF-1 alone was sufficient to promote retinal NV in mice, suggesting that therapies targeting only HIF-2 would not be adequate to prevent PSR. Nonetheless, administration of a HIF-2-specific inhibitor currently in clinical trials (PT2385) inhibited NV in the oxygen-induced retinopathy (OIR) mouse model. To unravel these discordant observations, we examined the expression of HIFs in OIR mice and demonstrated rapid but transient accumulation of HIF-1α but delayed and sustained accumulation of HIF-2α; simultaneous expression of HIF-1α and HIF-2α was not observed. Staggered HIF expression was corroborated in hypoxic adult mouse retinal explants but not in human retinal organoids, suggesting that this phenomenon may be unique to mice. Using pharmacological inhibition or an in vivo nanoparticle-mediated RNAi approach, we demonstrated that inhibiting either HIF was effective for preventing NV in OIR mice. Collectively, these results explain why inhibition of either HIF-1α or HIF-2α is equally effective for preventing retinal NV in mice but suggest that therapies targeting both HIFs will be necessary to prevent NV in patients with PSR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI139202DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8203455PMC
June 2021

Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis.

Proc Natl Acad Sci U S A 2021 May;118(19)

Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205;

Breast cancer patients with increased expression of hypoxia-inducible factors (HIFs) in primary tumor biopsies are at increased risk of metastasis, which is the major cause of breast cancer-related mortality. The mechanisms by which intratumoral hypoxia and HIFs regulate metastasis are not fully elucidated. In this paper, we report that exposure of human breast cancer cells to hypoxia activates epidermal growth factor receptor (EGFR) signaling that is mediated by the HIF-dependent expression of a disintegrin and metalloprotease 12 (ADAM12), which mediates increased ectodomain shedding of heparin-binding EGF-like growth factor, an EGFR ligand, leading to EGFR-dependent phosphorylation of focal adhesion kinase. Inhibition of ADAM12 expression or activity decreased hypoxia-induced breast cancer cell migration and invasion in vitro, and dramatically impaired lung metastasis after orthotopic implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2020490118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126789PMC
May 2021

Autophagic cell death in viral infection: Do TAM receptors play a role?

Int Rev Cell Mol Biol 2020 16;357:123-168. Epub 2020 Nov 16.

Vascular Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.

Containment and clearance of invading pathogens, such as viruses, by suppression of viral replication through antiviral mechanisms (e.g. CRISPR, interferon response or programmed cell death) provide examples of evolutionary developed responses by hosts to limit the establishment of infection. Degradation of the cytoplasm en masse provides an ideal cellular response against intruding pathogens. Degradation of such scale is achieved by a process called (macro)autophagy, where double membrane vacuoles, autophagosomes, engulf cytoplasm and organelles for lysosomal degradation. However, chronic and unrestrained autophagy poses catastrophic consequences to a cell especially when vital organelles (e.g. mitochondria or nucleus) are engulfed and destroyed. Recent findings in the field of autophagy and cell death regulation describe mechanisms that distinguish whether autophagy takes a moderate or excess route. This review aims to present new perspectives and re-examines current assumptions related to cell death regulation by autophagy. The emerging role of TAM receptors in the modulation of autophagy (i.e. both homeostatic and lethal) in the context of virus infections is also discussed in addition to chemical strategies for studying autophagy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.ircmb.2020.10.001DOI Listing
November 2020

Molecular Characterization of Equilibrative Nucleoside Transporters in the Rat Carotid Body and Their Regulation by Chronic Hypoxia.

Adv Exp Med Biol 2018;1071:43-50

Department of Biology, McMaster University, Hamilton, ON, Canada.

The mammalian carotid body (CB) is the main peripheral arterial chemoreceptor organ that is excited by decreases in blood PO (hypoxia) and increases in blood PCO/H. An increase in CB afferent carotid sinus nerve (CSN) discharge results in respiratory and cardiovascular reflex responses that help maintain homeostasis. The CB consists mainly of innervated clusters of the chemoreceptive type I (glomus) cells that are associated with the processes of glial-like type II cells. Extracellular ATP and adenosine (ADO) levels increase in response to acute hypoxia and there is evidence that during chronic sustained hypoxia ADO elevation plays a major role in regulating CB chemosensitivity and CSN discharge. We recently characterized the molecular identities of ectonucleotidase enzymes involved in regulating extracellular ATP hydrolysis to produce ADO in the rat CB. In the present study, we focus on a molecular characterization of the equilibrative nucleoside transporter (ENT) system that is known to regulate extracellular ADO concentrations in the rat CB based on pharmacological studies. Examination of ENT expression using quantitative PCR (qPCR) analysis revealed the expression of both ENT1 and ENT2 mRNAs in whole CB extracts from ~2-week-old juvenile rats. In dissociated rat CB cultures, both ENT1 and ENT2 immunoreactivity was localized to type I cell clusters. Furthermore, we show that ENT1 and ENT2 mRNA expression is downregulated in CBs isolated from rat pups exposed to chronic hypobaric hypoxia (~1 week). These findings reveal the molecular identities of the ENT system expressed in the rat CB and are consistent with the proposed shift to ADO signaling during chronic hypoxia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-91137-3_5DOI Listing
July 2019

Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment.

Proc Natl Acad Sci U S A 2018 10 21;115(41):E9640-E9648. Epub 2018 Sep 21.

Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205;

Breast cancer stem cells (BCSCs), which are characterized by a capacity for unlimited self-renewal and for generation of the bulk cancer cell population, play a critical role in cancer relapse and metastasis. Hypoxia is a common feature of the cancer microenvironment that stimulates the specification and maintenance of BCSCs. In this study, we found that hypoxia increased expression of adenosine receptor 2B (A2BR) in human breast cancer cells through the transcriptional activity of hypoxia-inducible factor 1. The binding of adenosine to A2BR promoted BCSC enrichment by activating protein kinase C-δ, which phosphorylated and activated the transcription factor STAT3, leading to increased expression of interleukin 6 and NANOG, two key mediators of the BCSC phenotype. Genetic or pharmacological inhibition of A2BR expression or activity decreased hypoxia- or adenosine-induced BCSC enrichment in vitro, and dramatically impaired tumor initiation and lung metastasis after implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice. These data provide evidence that targeting A2BR might be an effective strategy to eradicate BCSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1809695115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187157PMC
October 2018

Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia.

Front Physiol 2018 16;9:225. Epub 2018 Mar 16.

Department of Biology, McMaster University, Hamilton, ON, Canada.

Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O, CO/H, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O availability (hypoxia) and elevated CO/H (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2018.00225DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5864924PMC
March 2018

Role of glial-like type II cells as paracrine modulators of carotid body chemoreception.

Physiol Genomics 2018 04 9;50(4):255-262. Epub 2018 Mar 9.

Department of Biology, McMaster University , Hamilton, Ontario , Canada.

Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO (hypoxemia) and elevated CO/H (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00142.2017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966807PMC
April 2018

Hypoxia-regulated catecholamine secretion in chromaffin cells.

Cell Tissue Res 2018 05 19;372(2):433-441. Epub 2017 Oct 19.

Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada.

Adrenal catecholamine (CAT) secretion is a general physiological response of animals to environmental stressors such as hypoxia. This represents an important adaptive mechanism to maintain homeostasis and protect vital organs such as the brain. In adult mammals, CAT secretory responses are triggered by activation of the sympathetic nervous system that supplies cholinergic innervation of adrenomedullary chromaffin cells (AMC) via the splanchnic nerve. In the neonate, the splanchnic innervation of AMC is immature or absent, yet hypoxia stimulates a non-neurogenic CAT secretion that is critical for adaptation to extra-uterine life. This non-neurogenic, hypoxia-sensing mechanism in AMC is gradually lost or suppressed postnatally along a time course that parallels the development of splanchnic innervation. Moreover, denervation of adult AMC results in a gradual return of the direct hypoxia-sensing mechanism. The signaling pathways by which neonatal AMC sense acute hypoxia leading to non-neurogenic CAT secretion and the mechanisms that underlie the re-acquisition of hypoxia-sensing properties by denervated adult AMC, are beginning to be understood. This review will focus on current views concerning the mechanisms responsible for direct acute hypoxia sensing and CAT secretion in perinatal AMC and how they are regulated by innervation during postnatal development. It will also briefly discuss plasticity mechanisms likely to contribute to CAT secretion during exposures to chronic and intermittent hypoxia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-017-2703-zDOI Listing
May 2018

Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia.

Am J Physiol Cell Physiol 2017 Sep 21;313(3):C274-C284. Epub 2017 Jun 21.

Department of Biology, McMaster University, Hamilton, Ontario, Canada.

The carotid body (CB) chemoreflex maintains blood Po and Pco/H homeostasis and displays sensory plasticity during exposure to chronic hypoxia. Purinergic signaling via P1 and P2 receptors plays a pivotal role in shaping the afferent discharge at the sensory synapse containing catecholaminergic chemoreceptor (type I) cells, glial-like type II cells, and sensory (petrosal) nerve endings. However, little is known about the family of ectonucleotidases that control synaptic nucleotide levels. Using quantitative PCR (qPCR), we first compared expression levels of ectonucleoside triphosphate diphosphohydrolases (NTPDases1,2,3,5,6) and ecto-5'-nucleotidase (E5'Nt/CD73) mRNAs in juvenile rat CB vs. brain, petrosal ganglia, sympathetic (superior cervical) ganglia, and a sympathoadrenal chromaffin (MAH) cell line. In whole CB extracts, qPCR revealed a high relative expression of surface-located members NTPDase1,2 and E5'Nt/CD73, compared with low NTPDase3 expression. Immunofluorescence staining of CB sections or dissociated CB cultures localized NTPDase2,3 and E5'Nt/CD73 protein to the periphery of type I clusters, and in association with sensory nerve fibers and/or isolated type II cells. Interestingly, in CBs obtained from rats reared under chronic hypobaric hypoxia (~60 kPa, equivalent to 4,300 m) for 5-7 days, in addition to the expected upregulation of tyrosine hydroxylase and VEGF mRNAs, there was a significant upregulation of NTPDase3 and E5'Nt/CD73 mRNA, but a downregulation of NTPDase1 and NTPDase2 relative to normoxic controls. We conclude that NTPDase1,2,3 and E5'Nt/CD73 are the predominant surface-located ectonucleotidases in the rat CB and suggest that their differential regulation during chronic hypoxia may contribute to CB plasticity via control of synaptic ATP, ADP, and adenosine pools.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00328.2016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5625096PMC
September 2017

Chronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2α and protein kinase A.

Am J Physiol Cell Physiol 2014 Aug 4;307(3):C266-77. Epub 2014 Jun 4.

Department of Biology, McMaster University, Hamilton, Ontario, Canada; and

At birth, asphyxial stressors such as hypoxia and hypercapnia are important physiological stimuli for adrenal catecholamine release that is critical for the proper transition to extrauterine life. We recently showed that chronic opioids blunt chemosensitivity of neonatal rat adrenomedullary chromaffin cells (AMCs) to hypoxia and hypercapnia. This blunting was attributable to increased ATP-sensitive K(+) (KATP) channel and decreased carbonic anhydrase (CA) I and II expression, respectively, and involved μ- and δ-opioid receptor signaling pathways. To address underlying molecular mechanisms, we first exposed an O2- and CO2-sensitive, immortalized rat chromaffin cell line (MAH cells) to combined μ {[d-Arg(2),Ly(4)]dermorphin-(1-4)-amide}- and δ ([d-Pen(2),5,P-Cl-Phe(4)]enkephalin)-opioid agonists (2 μM) for ∼7 days. Western blot and quantitative real-time PCR analysis revealed that chronic opioids increased KATP channel subunit Kir6.2 and decreased CAII expression; both effects were blocked by naloxone and were absent in hypoxia-inducible factor (HIF)-2α-deficient MAH cells. Chronic opioids also stimulated HIF-2α accumulation along a time course similar to Kir6.2. Chromatin immunoprecipitation assays on opioid-treated cells revealed the binding of HIF-2α to a hypoxia response element in the promoter region of the Kir6.2 gene. The opioid-induced regulation of Kir6.2 and CAII was dependent on protein kinase A, but not protein kinase C or calmodulin kinase, activity. Interestingly, a similar pattern of HIF-2α, Kir6.2, and CAII regulation (including downregulation of CAI) was replicated in chromaffin tissue obtained from rat pups born to dams exposed to morphine throughout gestation. Collectively, these data reveal novel mechanisms by which chronic opioids blunt asphyxial chemosensitivity in AMCs, thereby contributing to abnormal arousal responses in the offspring of opiate-addicted mothers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00135.2014DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121586PMC
August 2014

Ontogeny of O2 and CO2//H+ chemosensitivity in adrenal chromaffin cells: role of innervation.

J Exp Biol 2014 Mar;217(Pt 5):673-81

Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1.

The adrenal medulla plays a key role in the physiological responses of developing and mature mammals by releasing catecholamines (CAT) during stress. In rodents and humans, the innervation of CAT-producing, adrenomedullary chromaffin cells (AMCs) is immature or absent during early postnatal life, when these cells possess 'direct' hypoxia- and CO2/H(+)-chemosensing mechanisms. During asphyxial stressors at birth, these mechanisms contribute to a CAT surge that is critical for adaptation to extra-uterine life. These direct chemosensing mechanisms regress postnatally, in parallel with maturation of splanchnic innervation. Here, we review the evidence that neurotransmitters released from the splanchnic nerve during innervation activate signaling cascades that ultimately cause regression of direct AMC chemosensitivity to hypoxia and hypercapnia. In particular, we consider the roles of cholinergic and opioid receptor signaling, given that splanchnic nerves release acetylcholine and opiate peptides onto their respective postsynaptic nicotinic and opioid receptors on AMCs. Recent in vivo and in vitro studies in the rat suggest that interactions involving α7 nicotinic acetylcholine receptors (nAChRs), the hypoxia inducible factor (HIF)-2α signaling pathway, protein kinases and ATP-sensitive K(+) (KATP) channels contribute to the selective suppression of hypoxic chemosensitivity. In contrast, interactions involving μ- and/or δ-opiod receptor signaling pathways contribute to the suppression of both hypoxic and hypercapnic chemosensitivity, via regulation of the expression of KATP channels and carbonic anhydrase (CA I and II), respectively. These data suggest that the ontogeny of O2 and CO2/H(+) chemosensitivity in chromaffin cells can be regulated by the tonic release of presynaptic neurotransmitters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.086165DOI Listing
March 2014

Chronic exposure of neonatal rat adrenomedullary chromaffin cells to opioids in vitro blunts both hypoxia and hypercapnia chemosensitivity.

J Physiol 2013 Jan 12;591(2):515-29. Epub 2012 Nov 12.

Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.

At birth, rat adrenomedullary chromaffin cells (AMCs) respond directly to asphyxial stressors such as hypoxia and hypercapnia by triggering catecholamine secretion, which is critical for proper transition to extrauterine life. These non-neurogenic responses are suppressed postnatally in parallel with the development of splanchnic innervation, and reappear following denervation of the adult adrenal gland. To test whether neural factors released from the splanchnic nerve may regulate AMC chemosensitivity, we previously showed that nicotinic agonists in utero and in vitro suppressed hypoxia, but not hypercapnia, sensitivity. Here, we considered the potential role of opiate peptides which are also released from the splanchnic nerve and act via postsynaptic μ-, δ- and -opioid receptors. Treatment of neonatal rat AMC cultures for ∼1 week with μ- and/or δ- (but not ) opioid agonists (2 μm) led to a marked suppression of both hypoxia and hypercapnia sensitivity, as measured by K(+) current inhibition and membrane depolarization; co-incubation with naloxone prevented the effects of combined opioids. The suppression of hypoxia sensitivity was attributable to upregulation of K(ATP) current density and the K(ATP) channel subunit Kir6.2, and was reversed by the K(ATP) channel blocker, glibenclamide. By contrast, suppression of hypercapnia sensitivity was associated with down-regulation of two key mediators of CO(2) sensing, i.e. carbonic anhydrase I and II. Collectively, these studies point to a novel role for opioid receptor signalling in the developmental regulation of chromaffin cell chemosensitivity, and suggest that prenatal exposure to opioid drugs could lead to impaired arousal responses in the neonate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2012.243477DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3577520PMC
January 2013

Developmental regulation of glucosensing in rat adrenomedullary chromaffin cells: potential role of the K(ATP) channel.

Adv Exp Med Biol 2012 ;758:191-8

Department of Biology, McMaster University, Hamilton, ON, Canada.

During birth, when the maternal supply of glucose is occluded, there is a drastic fall in blood glucose in the newborn. This stimulus triggers the non-neurogenic release of catecholamines from adrenomedullary chromaffin cells, which restores blood glucose homeostasis. In this report we present preliminary data showing that glucosensing is present in neonatal chromaffin cells from adrenal slices but absent in chromaffin cells from juvenile slices. Moreover, we show that the aglycemia-evoked rise in intracellular Ca2+ is robust in neonatal chromaffin cells but blunted in juvenile chromaffin cells. Lastly, we show that the Kir6.2 subunit of the KATP channel, is upregulated in the adrenal medulla in juvenile animals providing a potential mechanism for the developmental regulation of glucosensing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-007-4584-1_27DOI Listing
April 2013

Chronic nicotine induces hypoxia inducible factor-2α in perinatal rat adrenal chromaffin cells: role in transcriptional upregulation of KATP channel subunit Kir6.2.

Am J Physiol Cell Physiol 2012 May 7;302(10):C1531-8. Epub 2012 Mar 7.

Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1.

Fetal nicotine exposure causes impaired adrenal catecholamine secretion and increased neonatal mortality during acute hypoxic challenges. Both effects are attributable to upregulation of ATP-sensitive K(+) channels (K(ATP) channels) and can be rescued by pretreatment with the blocker, glibenclamide. Although use of in vitro models of primary and immortalized, fetal-derived rat adrenomedullary chromaffin cells (i.e., MAH cells) demonstrated the involvement of α7 nicotinic ACh receptor (nAChR) stimulation and the transcription factor, HIF-2α, the latter's role was unclear. Using Western blots, we show that chronic nicotine causes a progressive, time-dependent induction of HIF-2α in MAH cells that parallels the upregulation of K(ATP) channel subunit, Kir6.2. Moreover, a common HIF target, VEGF mRNA, was also upregulated after chronic nicotine. All the above effects were prevented during co-incubation with α-bungarotoxin (100 nM), a specific α7 nAChR blocker, and were absent in HIF-2α-deficient MAH cells. Chromatin immunoprecipitation (ChIP) assays demonstrated binding of HIF-2α to a putative hypoxia response element in Kir6.2 gene promoter. Specificity of this signaling pathway was validated in adrenal glands from pups born to dams exposed to nicotine throughout gestation; the upregulation of both HIF-2α and Kir6.2 was confined to medullary, but not cortical, tissue. This study has uncovered a signaling pathway whereby a nonhypoxic stimulus (nicotine) promotes HIF-2α-mediated transcriptional upregulation of a novel target, Kir6.2 subunit. The data suggest that the HIF pathway may be involved in K(ATP) channel-mediated neuroprotection during brain ischemia, and in the effects of chronic nicotine on ubiquitous brain α7 nAChR.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00052.2012DOI Listing
May 2012
-->