Publications by authors named "Shahryar Eivazzadeh"

4 Publications

  • Page 1 of 1

A Novel Instrument for Measuring Older People's Attitudes Toward Technology (TechPH): Development and Validation.

J Med Internet Res 2019 05 23;21(5):e13951. Epub 2019 May 23.

Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden.

Background: The use of health technology by older people is coming increasingly in focus with the demographic changes. Health information technology is generally perceived as an important factor in enabling increased quality of life and reducing the cost of care for this group. Age-appropriate design and facilitation of technology adoption are important to ensure functionality and removal of various barriers to usage. Development of assessment tools and instruments for evaluating older persons' technology adoption and usage as well as measuring the effects of the interventions are of high priority. Both usability and acceptance of a specific technology or service are important factors in evaluating the impact of a health information technology intervention. Psychometric measures are seldom included in evaluations of health technology. However, basic attitudes and sentiments toward technology (eg, technophilia) could be argued to influence both the level of satisfaction with the technology itself as well as the perception of the health intervention outcome.

Objective: The purpose of this study is to develop a reduced and refined instrument for measuring older people's attitudes and enthusiasm for technology based on relevant existing instruments for measuring technophilia. A requirement of the new instrument is that it should be short and simple to make it usable for evaluation of health technology for older people.

Methods: Initial items for the TechPH questionnaire were drawn from a content analysis of relevant existing technophilia measure instruments. An exploratory factor analysis was conducted in a random selection of persons aged 65 years or older (N=374) on eight initial items. The scale was reduced to six items, and the internal consistency and reliability of the scale were examined. Further validation was made by a confirmatory factor analysis (CFA).

Results: The exploratory factor analysis resulted in two factors. These factors were analyzed and labeled techEnthusiasm and techAnxiety. They demonstrated relatively good internal consistency (Cronbach alpha=.72 and .68, respectively). The factors were confirmed in the CFA and showed good model fit (χ=21.2, χ/df=2.65, comparative fit index=0.97, adjusted goodness-of-fit index=0.95, root mean square error of approximation=0.067, standardized root mean square residual=0.036).

Conclusions: The construed TechPH score showed expected relations to external real-world criteria, and the two factors showed interesting internal relations. Different technophilia personality traits distinguish clusters with different behaviors of adaptation as well as usage of new technology. Whether there is an independent association with the TechPH score against outcomes in health technology projects needs to be shown in further studies. The instrument must also be validated in different contexts, such as other countries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2196/13951DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6552448PMC
May 2019

Most Influential Qualities in Creating Satisfaction Among the Users of Health Information Systems: Study in Seven European Union Countries.

JMIR Med Inform 2018 Nov 30;6(4):e11252. Epub 2018 Nov 30.

Department of Health Science, Blekinge Institute of Technology, Karlskrona, Sweden.

Background: Several models suggest how the qualities of a product or service influence user satisfaction. Models such as the Customer Satisfaction Index (CSI), Technology Acceptance Model (TAM), and Delone and McLean Information Systems Success demonstrate those relations and have been used in the context of health information systems.

Objective: This study aimed to investigate which qualities foster greater satisfaction among patient and professional users. In addition, we are interested in knowing to what extent improvement in those qualities can explain user satisfaction and whether this makes user satisfaction a proxy indicator of those qualities.

Methods: The Unified eValuation using ONtology (UVON) method was used to construct an ontology of the required qualities for 7 electronic health (eHealth) apps being developed in the Future Internet Social and Technological Alignment Research (FI-STAR) project, a European Union (EU) project in electronic health (eHealth). The eHealth apps were deployed across 7 EU countries. The ontology included and unified the required qualities of those systems together with the aspects suggested by the Model for ASsessment of Telemedicine apps (MAST) evaluation framework. Moreover, 2 similar questionnaires for 87 patient users and 31 health professional users were elicited from the ontology. In the questionnaires, the user was asked if the system has improved the specified qualities and if the user was satisfied with the system. The results were analyzed using Kendall correlation coefficients matrices, incorporating the quality and satisfaction aspects. For the next step, 2 partial least squares structural equation modeling (PLS-SEM) path models were developed using the quality and satisfaction measure variables and the latent construct variables that were suggested by the UVON method.

Results: Most of the quality aspects grouped by the UVON method are highly correlated. Strong correlations in each group suggest that the grouped qualities can be measures that reflect a latent quality construct. The PLS-SEM path analysis for the patients reveals that the effectiveness, safety, and efficiency of treatment provided by the system are the most influential qualities in achieving and predicting user satisfaction. For the professional users, effectiveness and affordability are the most influential. The parameters of the PLS-SEM that are calculated allow for the measurement of a user satisfaction index similar to CSI for similar health information systems.

Conclusions: For both patients and professionals, the effectiveness of systems highly contributes to their satisfaction. Patients care about improvements in safety and efficiency, whereas professionals care about improvements in the affordability of treatments with health information systems. User satisfaction is reflected more in the users' evaluation of system output and fulfillment of expectations but slightly less in how far the system is from ideal. Investigating satisfaction scores can be a simple and fast way to infer if the system has improved the abovementioned qualities in treatment and care.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2196/11252DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294876PMC
November 2018

Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review.

PLoS One 2017 29;12(6):e0179804. Epub 2017 Jun 29.

Department of Health, Blekinge Institute of Technology, Karlskrona, Sweden.

Background: Dementia is a complex disorder characterized by poor outcomes for the patients and high costs of care. After decades of research little is known about its mechanisms. Having prognostic estimates about dementia can help researchers, patients and public entities in dealing with this disorder. Thus, health data, machine learning and microsimulation techniques could be employed in developing prognostic estimates for dementia.

Objective: The goal of this paper is to present evidence on the state of the art of studies investigating and the prognosis of dementia using machine learning and microsimulation techniques.

Method: To achieve our goal we carried out a systematic literature review, in which three large databases-Pubmed, Socups and Web of Science were searched to select studies that employed machine learning or microsimulation techniques for the prognosis of dementia. A single backward snowballing was done to identify further studies. A quality checklist was also employed to assess the quality of the evidence presented by the selected studies, and low quality studies were removed. Finally, data from the final set of studies were extracted in summary tables.

Results: In total 37 papers were included. The data summary results showed that the current research is focused on the investigation of the patients with mild cognitive impairment that will evolve to Alzheimer's disease, using machine learning techniques. Microsimulation studies were concerned with cost estimation and had a populational focus. Neuroimaging was the most commonly used variable.

Conclusions: Prediction of conversion from MCI to AD is the dominant theme in the selected studies. Most studies used ML techniques on Neuroimaging data. Only a few data sources have been recruited by most studies and the ADNI database is the one most commonly used. Only two studies have investigated the prediction of epidemiological aspects of Dementia using either ML or MS techniques. Finally, care should be taken when interpreting the reported accuracy of ML techniques, given studies' different contexts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179804PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491044PMC
September 2017

Evaluating Health Information Systems Using Ontologies.

JMIR Med Inform 2016 Jun 16;4(2):e20. Epub 2016 Jun 16.

Department of Health Science, Blekinge Institute of Technology, Karlskrona, Sweden.

Background: There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems.

Objectives: The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems-whether similar or heterogeneous-by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework.

Methods: On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries.

Results: The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project.

Conclusions: The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2196/medinform.5185DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4929349PMC
June 2016