Publications by authors named "Sergi Moreno"

4 Publications

  • Page 1 of 1

Peppermint protocol: first results for gas chromatography-ion mobility spectrometry.

J Breath Res 2022 05 26;16(3). Epub 2022 May 26.

Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, United Kingdom.

Theseeks to inform the standardisation of breath analysis methods. Fivewith gas chromatography-ion mobility spectrometry (GC-IMS), operating in the positive mode with a tritiumH 5.68 keV, 370 MBq ionisation source, were undertaken to provide benchmarkdata for this technique, to support its use in breath-testing, analysis, and research. Headspace analysis of a peppermint-oil capsule by GC-IMS with on-column injection (0.5 cm) identified 12 IMS responsive compounds, of which the four most abundant were: eucalyptol;-pinene;-pinene; and limonene. Elevated concentrations of these four compounds were identified in exhaled-breath following ingestion of a peppermint-oil capsule. An unidentified compound attributed as a volatile catabolite of peppermint-oil was also observed. The most intense exhaled peppermint-oil component was eucalyptol, which was selected as a peppermint marker for benchmarking GC-IMS. Twenty-five washout experiments monitored levels of exhaled eucalyptol, by GC-IMS with on-column injection (0.5 cm), at= 0 min, and then at+ 60,+ 90,+ 165,+ 285 and+ 360 min from ingestion of a peppermint capsule resulting in 148 peppermint breath analyses. Additionally, thedata was used to evaluate clinical deployments with a further five washout tests run in clinical settings generating an additional 35 breath samples. Regression analysis yielded an average extrapolated time taken for exhaled eucalyptol levels to return to baseline values to be 429 ± 62 min (±95% confidence-interval). The benchmark value was assigned to the lower 95% confidence-interval, 367 min. Further evaluation of the data indicated that the maximum number of volatile organic compounds discernible from a 0.5 cmbreath sample was 69, while the use of an in-line biofilter appeared to reduce this to 34.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7163/ac6ca0DOI Listing
May 2022

The peppermint breath test benchmark for PTR-MS and SIFT-MS.

J Breath Res 2021 09 6;15(4). Epub 2021 Sep 6.

Department of Molecular and Laser Physics, Radboud University, Nijmegen, The Netherlands.

A major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, theinvolves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from theperformed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene,- and-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7163/ac1fcfDOI Listing
September 2021

A benchmarking protocol for breath analysis: the peppermint experiment.

J Breath Res 2020 08 10;14(4):046008. Epub 2020 Aug 10.

Exhaled Biomarkers and Exposure, Department of Molecular and Laser Physics, IMM, Radboud University, Nijmegen, The Netherlands.

Sampling of volatile organic compounds (VOCs) has shown promise for detection of a range of diseases but results have proved hard to replicate due to a lack of standardization. In this work we introduce the 'Peppermint Initiative'. The initiative seeks to disseminate a standardized experiment that allows comparison of breath sampling and data analysis methods. Further, it seeks to share a set of benchmark values for the measurement of VOCs in breath. Pilot data are presented to illustrate the standardized approach to the interpretation of results obtained from the Peppermint experiment. This pilot study was conducted to determine the washout profile of peppermint compounds in breath, identify appropriate sampling time points, and formalise the data analysis. Five and ten participants were recruited to undertake a standardized intervention by ingesting a peppermint oil capsule that engenders a predictable and controlled change in the VOC profile in exhaled breath. After collecting a pre-ingestion breath sample, five further samples are taken at 2, 4, 6, 8, and 10 h after ingestion. Samples were analysed using ion mobility spectrometry coupled to multi-capillary column and thermal desorption gas chromatography mass spectrometry. A regression analysis of the washout data was used to determine sampling times for the final peppermint protocol, and the time for the compound measurement to return to baseline levels was selected as a benchmark value. A measure of the quality of the data generated from a given technique is proposed by comparing data fidelity. This study protocol has been used for all subsequent measurements by the Peppermint Consortium (16 partners from seven countries). So far 1200 breath samples from 200 participants using a range of sampling and analytical techniques have been collected. The data from the consortium will be disseminated in subsequent technical notes focussing on results from individual platforms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7163/aba130DOI Listing
August 2020

Stability of gaseous volatile organic compounds contained in gas cylinders with different internal wall treatments.

Elementa (Wash D C) 2019 ;7

Van Swinden Laboratory (VSL), Delft, NL.

Measurements of volatile organic compounds (VOCs) have been ongoing for decades to track growth rates and assist in curbing emissions of these compounds into the atmosphere. To accurately establish mole fraction trends and assess the role of these gas-phase compounds in atmospheric chemistry it is essential to have good calibration standards. A necessity and precursor to accurate VOC gas standards are the gas cylinders and the internal wall treatments that aid in maintaining the stability of the mixtures over long periods of time, measured in years. This paper will discuss the stability of VOC gas mixtures in different types of gas cylinders and internal wall treatments. Stability data will be given for 85 VOCs studied in gas mixtures by National Metrology Institutes and other agency laboratories. This evaluation of cylinder treatment materials is the outcome of an activity of the VOC Expert Group within the framework of the World Meteorological Organization (WMO) Global Atmospheric Watch (GAW) program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1525/elementa.366DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047742PMC
January 2019
-->