Publications by authors named "Serge Della-Negra"

17 Publications

  • Page 1 of 1

Topography Measurements Using High Mass Resolution Time-of-Flight Secondary Ion Mass Spectrometry: Application to Banknotes.

Anal Chem 2019 07 1;91(14):8864-8872. Epub 2019 Jul 1.

Research and Development Department , Lebanese Atomic Energy Commission-CNRS , P.O. Box 11-8281, Beirut 1107 2260 , Lebanon.

An unconventional approach using the time-of-flight secondary ion mass spectrometry (TOF-SIMS) technique to determine the height topography at the microscale is detailed in this work with an application to cotton paper banknotes. The study was conducted by determining the effect of all related factors and parameters on the height measurement by taking the simplest model made from two Post-it sheets. For each sample, the difference in the TOF of the same secondary ion coming from two different heights was successfully attributed to the step height of the studied areas' topography, which was measured using classic methods. The measurement was independent of the orientation of the topography with regard to the primary ion beam and the electron beam azimuth. Moreover, the adjustment of the extraction gap with different layers has no effect on such measurements. However, a range of the analyzer acceptance energy values could be considered to achieve the expected outcomes only if the different analyzers' component energies are also changing accordingly. Heights between 20 and 180 μm were successfully measured using this new method. An added benefit to this method over other height measurement methods is the ability to discern areas with different chemical compositions, which eventually may help aid understanding of the sample in question.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b00114DOI Listing
July 2019

A Mineralogical Context for the Organic Matter in the Paris Meteorite Determined by A Multi-Technique Analysis.

Life (Basel) 2019 May 30;9(2). Epub 2019 May 30.

Institut de Physique Nucléaire d'Orsay, UMR 8608, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, F-91406 Orsay, France.

This study is a multi-technique investigation of the Paris carbonaceous chondrite directly applied on two selected 500 × 500 µm² areas of a millimetric fragment, without any chemical extraction. By mapping the partial hydration of the amorphous silicate phase dominating the meteorite sample matrix, infrared spectroscopy gave an interesting glimpse into the way the fluid may have circulated into the sample and partially altered it. The TOF-SIMS in-situ analysis allowed the studying and mapping of the wide diversity of chemical moieties composing the meteorite organic content. The results of the combined techniques show that at the micron scale, the organic matter was always spatially associated with the fine-grained and partially-hydrated amorphous silicates and to the presence of iron in different chemical states. These systematic associations, illustrated in previous studies of other carbonaceous chondrites, were further supported by the identification by TOF-SIMS of cyanide and/or cyanate salts that could be direct remnants of precursor ices that accreted with dust during the parent body formation, and by the detection of different metal-containing large organic ions. Finally, the results obtained emphasized the importance of studying the specific interactions taking place between organic and mineral phases in the chondrite matrix, in order to investigate their role in the evolution story of primitive organic matter in meteorite parent bodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/life9020044DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617381PMC
May 2019

Biosynthetic investigation of γ-lactones in Sextonia rubra wood using in situ TOF-SIMS MS/MS imaging to localize and characterize biosynthetic intermediates.

Sci Rep 2019 02 13;9(1):1928. Epub 2019 Feb 13.

CNRS UMR8172 EcoFoG, AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane, 97300, Cayenne, France.

Molecular analysis by parallel tandem mass spectrometry (MS/MS) imaging contributes to the in situ characterization of biosynthetic intermediates which is crucial for deciphering the metabolic pathways in living organisms. We report the first use of TOF-SIMS MS/MS imaging for the cellular localization and characterization of biosynthetic intermediates of bioactive γ-lactones rubrynolide and rubrenolide in the Amazonian tree Sextonia rubra (Lauraceae). Five γ-lactones, including previously reported rubrynolide and rubrenolide, were isolated using a conventional approach and their structural characterization and localization at a lateral resolution of ~400 nm was later achieved using TOF-SIMS MS/MS imaging analysis. 2D/3D MS imaging at subcellular level reveals that putative biosynthetic γ-lactones intermediates are localized in the same cell types (ray parenchyma cells and oil cells) as rubrynolide and rubrenolide. Consequently, a revised metabolic pathway of rubrynolide was proposed, which involves the reaction between 2-hydroxysuccinic acid and 3-oxotetradecanoic acid, contrary to previous studies suggesting a single polyketide precursor. Our results provide insights into plant metabolite production in wood tissues and, overall, demonstrate that combining high spatial resolution TOF-SIMS imaging and MS/MS structural characterization offers new opportunities for studying molecular and cellular biochemistry in plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-37577-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374367PMC
February 2019

Internal Energy Distribution of Secondary Ions Under Argon and Bismuth Cluster Bombardments: "Soft" Versus "Hard" Desorption-Ionization Process.

J Am Soc Mass Spectrom 2019 Feb 12;30(2):321-328. Epub 2018 Nov 12.

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.

The emission/ionization process under massive argon cluster bombardment was investigated by measuring the internal energy distributions of a series of benzylpyridinium ions. Argon clusters with kinetic energies between 10 and 20 keV and cluster sizes ranging from 500 to 10,000 were used to establish the influence of their size, energy, and velocity on the internal energy distribution of the secondary ions. It is shown that the internal energy distribution of secondary ions principally depends on the energy per atom or the velocity of the cluster ion beam (E/n ∝ v). Under low energy per atom (E/n ˂ 10 eV), the mean internal energy and fragmentation yield increase rapidly with the incident energy of individual constituents. Beyond 10 eV/atom impact (up to 40 eV/atom), the internal energy reaches a plateau and remains constant. Results were compared with those generated from bismuth cluster impacts for which the mean internal energies correspond well to the plateau values for argon clusters. However, a significant difference was found between argon and bismuth clusters concerning the damage or disappearance cross section. A 20 times smaller disappearance cross section was measured under 20 keV Ar impact compared to 25 keV Bi bombardment, thus quantitatively showing the low damage effect of large argon clusters for almost the same molecular ion yield. Graphical Abstract ᅟ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-018-2090-zDOI Listing
February 2019

Tandem Mass Spectrometry Imaging and in Situ Characterization of Bioactive Wood Metabolites in Amazonian Tree Species Sextonia rubra.

Anal Chem 2018 06 8;90(12):7535-7543. Epub 2018 Jun 8.

Institut de Chimie des Substances Naturelles , CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay , Avenue de la Terrasse , 91198 Gif-sur-Yvette , France.

Driven by a necessity for confident molecular identification at high spatial resolution, a new time-of-flight secondary ion mass spectrometry (TOF-SIMS) tandem mass spectrometry (tandem MS) imaging instrument has been recently developed. In this paper, the superior MS/MS spectrometry and imaging capability of this new tool is shown for natural product study. For the first time, via in situ analysis of the bioactive metabolites rubrynolide and rubrenolide in Amazonian tree species Sextonia rubra (Lauraceae), we were able both to analyze and to image by tandem MS the molecular products of natural biosynthesis. Despite the low abundance of the metabolites in the wood sample(s), efficient MS/MS analysis of these γ-lactone compounds was achieved, providing high confidence in the identification and localization. In addition, tandem MS imaging minimized the mass interferences and revealed specific localization of these metabolites primarily in the ray parenchyma cells but also in certain oil cells and, further, revealed the presence of previously unidentified γ-lactone, paving the way for future studies in biosynthesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.8b01157DOI Listing
June 2018

An Integrative Approach to Decipher the Chemical Antagonism between the Competing Endophytes Paraconiothyrium variabile and Bacillus subtilis.

J Nat Prod 2017 11 15;80(11):2863-2873. Epub 2017 Nov 15.

Unité Molécules de Communication et Adaptation des Micro-organismes (UMR 7245), Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS , CP 54, 57 rue Cuvier, 75005 Paris, France.

An integrative approach combining traditional natural products chemistry, molecular networking, and mass spectrometry imaging has been undertaken to decipher the molecular dialogue between the fungus Paraconiothyrium variabile and the bacterium Bacillus subtilis, which were isolated as endophytes from the conifer Cephalotaxus harringtonia and are characterized by a strong and mutual antibiosis. From this study, we highlight that bacterial surfactins and a fungal tetronic acid are involved in such competition and that the fungus is able to hydrolyze surfactins to fight against the bacterial partner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.6b01185DOI Listing
November 2017

The collision of a hypervelocity massive projectile with free-standing graphene: Investigation of secondary ion emission and projectile fragmentation.

J Chem Phys 2017 Feb;146(5):054305

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3144, USA.

We present here the study of the individual hypervelocity massive projectiles (440-540 keV, 33-36 km/s Au cluster) impact on 1-layer free-standing graphene. The secondary ions were detected and recorded separately from each individual impact in the transmission direction using a time-of-flight mass spectrometer. We observed C ions emitted from graphene, the projectiles which penetrated the graphene, and the Au fragment ions in mass spectra. During the projectile-graphene interaction, the projectile loses ∼15% of its initial kinetic energy (∼0.18 keV/atom, 72 keV/projectile). The Au projectiles are neutralized when approaching the graphene and then partially ionized again via electron tunneling from the hot rims of the holes on graphene, obtaining positive and negative charges. The projectile reaches an internal energy of ∼450-500 eV (∼4400-4900 K) after the impact and then undergoes a ∼90-100 step fragmentation with the ejection of Au atoms in the experimental time range of ∼0.1 μs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4975171DOI Listing
February 2017

Mapping Dicorynia guianensis Amsh. wood constituents by submicron resolution cluster-TOF-SIMS imaging.

J Mass Spectrom 2016 Jun;51(6):412-23

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.

The preparation of tropical wood surface sections for time-of-flight secondary ion mass spectrometry imaging is described, and the use of delayed extraction of secondary ions and its interest for the analysis of vegetal surface are shown. The method has been applied to the study by time-of-flight secondary ion mass spectrometry imaging with a resolution of less than one micron of a tropical wood species, Dicorynia guianensis, which is one of the most exploited wood in French Guiana for its durable heartwood. The heartwood of this species exhibits an economical importance, but its production is not controlled in forestry. Results show an increase of tryptamine from the transition zone and a concomitant decrease of inorganic ions and starch fragment ions. These experiments lead to a better understanding of the heartwood formation and the origin of the natural durability of D. guianensis. Copyright © 2016 John Wiley & Sons, Ltd.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.3762DOI Listing
June 2016

Time-of-flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions.

Rapid Commun Mass Spectrom 2015 Jul;29(13):1187-95

Institut de Chimie des Substances Naturelles, CNRS-ICSN UPR2301, Université Paris-Sud, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.

Rationale: In Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF-SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub-µm lateral resolution, but the combination of both is generally not possible.

Methods: With a TOF-SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches.

Results: The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass-to-charge ratio.

Conclusions: Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF-SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033000PMC
http://dx.doi.org/10.1002/rcm.7210DOI Listing
July 2015

Hypervelocity nanoparticle impacts on free-standing graphene: a sui generis mode of sputtering.

J Chem Phys 2015 Jan;142(4):044308

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3144, USA.

The study of the interaction of hypervelocity nano-particles with a 2D material and ultra-thin targets (single layer graphene, multi-layer graphene, and amorphous carbon foils) has been performed using mass selected gold nano-particles produced from a liquid metal ion source. During these impacts, a large number of atoms are ejected from the graphene, corresponding to a hole of ∼60 nm(2). Additionally, for the first time, secondary ions have been observed simultaneously in both the transmission and reflection direction (with respect to the path of the projectile) from a 2D target. The ejected area is much larger than that predicted by molecular dynamic simulations and a large ionization rate is observed. The mass distribution and characteristics of the emitted secondary ions are presented and offer an insight into the process to produce the large hole observed in the graphene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4906343DOI Listing
January 2015

Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.

J Phys Chem C Nanomater Interfaces 2012 Apr 12;116(14):8138-8144. Epub 2012 Mar 12.

Department of Chemistry, Texas A&M University, College Station, Texas 77943-3144.

Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp212126mDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413922PMC
April 2012

Analysis of Fluorescent Proteins with a Nanoparticle Probe.

J Phys Chem Lett 2012 Feb;3(3):337-341

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255.

This letter presents the first application of high energy, single nanoparticle probes (e.g., 520 keV Au(400) 2nm NP) in the characterization of surfaces containing fluorescent proteins (e.g., GFP variants) by their co-emitted photon, electron and secondary ion signals. NP induced protein luminescence increases with the NP incident energy, is originated by the NP impact and is transferred to the protein fluorophor via electronic energy transfer. Multi-electron emission is observed per single NP impacts and their distributions are specific to the target morphology and composition. Fragment ions of protein sub-units consisting of 2-7 amino acid peptides are observed under individual NP impacts that can be correlated to the random protein orientation relative to the impact site (e.g., outer layer or "skin" of the protein).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz201547xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270945PMC
February 2012

Analysis of native biological surfaces using a 100 kV massive gold cluster source.

Anal Chem 2011 Nov 18;83(22):8448-53. Epub 2011 Oct 18.

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States.

In the present work, the advantages of a new, 100 kV platform equipped with a massive gold cluster source for the analysis of native biological surfaces are shown. Inspection of the molecular ion emission as a function of projectile size demonstrates a secondary ion yield increase of ~100× for 520 keV Au(400)(4+) as compared to 130 keV Au(3)(1+) and 43 keV C(60). In particular, yields of tens of percent of molecular ions per projectile impact for the most abundant components can be observed with the 520 keV Au(400)(4+) probe. A comparison between 520 keV Au(400)(4+) time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) data showed a similar pattern and similar relative intensities of lipid components across a rat brain sagittal section. The abundant secondary ion yield of analyte-specific ions makes 520 keV Au(400)(4+) projectiles an attractive probe for submicrometer molecular mapping of native surfaces.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac201481rDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236644PMC
November 2011

Ion beam analysis and PD-MS as new analytical tools for quality control of pharmaceuticals: comparative study from fluphenazine in solid dosage forms.

Anal Chem 2010 Sep;82(17):7309-18

Lebanese Atomic Energy Commission--CNRS, Airport Road, PO Box 11-8281, Beirut, Lebanon.

In order to evaluate the potential of accelerator based analytical techniques ((particle induced X-ray emission (PIXE), particle induced gamma-ray emission (PIGE), and particle desorption mass spectrometry (PD-MS)) for the analysis of commercial pharmaceutical products in their solid dosage form, the fluphenazine drug has been taken as a representative example. It is demonstrated that PIXE and PIGE are by far the best choice for quantification of the active ingredient (AI) (certification with 7% precision) from the reactions induced on its specific heteroatoms fluorine and sulfur using pellets made from original tablets. Since heteroatoms cannot be present in all types of drugs, the PD-MS technique, which makes easily the distinction between AI(s) and excipients, has been evaluated for the same material. It is shown that the quantification of AI is obtained via the detection of its protonated molecule. However, calibration curves have to be made from the secondary ion yield variations since matrix effects of various nature are characteristics of such mixtures of heterogeneous materials (including deposits from soluble components). From the analysis of solid tablets, (either transformed into pellets and even as received), it is strongly suggested that the physical state of the grains in the mixture is a crucial parameter in the ion emission and accordingly for the calibration curves. As a result of our specific (but not optimized) conditions the resulting precision is <17% with an almost linear range extending from 0.04 to 7.87 mg of AI in a tablet made under the manufacturer conditions (the commercial drug product is labeled at 5 mg).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac101247dDOI Listing
September 2010

The Au(n) cluster probe in secondary ion mass spectrometry: influence of the projectile size and energy on the desorption/ionization rate from biomolecular solids.

Rapid Commun Mass Spectrom 2005 ;19(13):1851-7

Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, 91406 Orsay, France.

A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.1995DOI Listing
September 2005

Matrix-implanted laser desorption/ionization mass spectrometry.

Anal Chem 2004 Dec;76(24):7288-93

Institut de Physique Nucléaire, CNRS-IN2P3, 91406 Orsay, France, Equipe Endotoxines, UMR 8619 du CNRS, IBBMC, Université de Paris-Sud, 91405 Orsay, France.

The implantation of low-velocity massive gold clusters is shown to be a method of choice for homogeneous incorporation of a metallic matrix into the near-surface region of a solid biopolymer for subsequent laser desorption/ionization (LDI) MS analysis. Matrix implanted (MI)LDI spectra from cluster-implanted pure test peptide or tissue exhibit molecular ion peaks similar to those observed by matrix-assisted LDI. Moreover, the ion emission is very reproducible from any spot on the surface of these test samples. MILDI promises to be a powerful technique for mass spectrometric analysis of native biological samples as demonstrated by the first results on rat brain tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac049123iDOI Listing
December 2004