Publications by authors named "Serene Cheng"

3 Publications

  • Page 1 of 1

A Comparative Oncology Drug Discovery Pipeline to Identify and Validate New Treatments for Osteosarcoma.

Cancers (Basel) 2020 Nov 11;12(11). Epub 2020 Nov 11.

Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.

Background: Osteosarcoma is a rare but aggressive bone cancer that occurs primarily in children. Like other rare cancers, treatment advances for osteosarcoma have stagnated, with little improvement in survival for the past several decades. Developing new treatments has been hampered by extensive genomic heterogeneity and limited access to patient samples to study the biology of this complex disease.

Methods: To overcome these barriers, we combined the power of comparative oncology with patient-derived models of cancer and high-throughput chemical screens in a cross-species drug discovery pipeline.

Results: Coupling in vitro high-throughput drug screens on low-passage and established cell lines with in vivo validation in patient-derived xenografts we identify the proteasome and CRM1 nuclear export pathways as therapeutic sensitivities in osteosarcoma, with dual inhibition of these pathways inducing synergistic cytotoxicity.

Conclusions: These collective efforts provide an experimental framework and set of new tools for osteosarcoma and other rare cancers to identify and study new therapeutic vulnerabilities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers12113335DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696249PMC
November 2020

From the Clinic to the Bench and Back Again in One Dog Year: How a Cross-Species Pipeline to Identify New Treatments for Sarcoma Illuminates the Path Forward in Precision Medicine.

Front Oncol 2020 11;10:117. Epub 2020 Feb 11.

Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, United States.

Cancer drug discovery is an inefficient process, with more than 90% of newly-discovered therapies failing to gain regulatory approval. Patient-derived models of cancer offer a promising new approach to identify new treatments; however, for rare cancers, such as sarcomas, access to patient samples is limited, which precludes development of patient-derived models. To address the limited access to patient samples, we have turned to pet dogs with naturally-occurring sarcomas. Although sarcomas make up <1% of all human cancers, sarcomas represent 15% of cancers in dogs. Because dogs have similar immune systems, an accelerated pace of cancer progression, and a shared environment with humans, studying pet dogs with cancer is ideal for bridging gaps between mouse models and human cancers. Here, we present our cross-species personalized medicine pipeline to identify new therapies for sarcomas. We explore this process through the focused study of a pet dog, Teddy, who presented with six synchronous leiomyosarcomas. Using our pipeline we identified proteasome inhibitors as a potential therapy for Teddy. Teddy was treated with bortezomib and showed a varied response across tumors. Whole exome sequencing revealed substantial genetic heterogeneity across Teddy's recurrent tumors and metastases, suggesting that intra-patient heterogeneity and tumoral adaptation were responsible for the heterogeneous clinical response. Ubiquitin proteomics coupled with exome sequencing revealed multiple candidate driver mutations in proteins related to the proteasome pathway. Together, our results demonstrate how the comparative study of canine sarcomas offers important insights into the development of personalized medicine approaches that can lead to new treatments for sarcomas in both humans and canines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2020.00117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026496PMC
February 2020

Among Patients with Undetectable Hepatitis B Surface Antigen and Hepatocellular Carcinoma, a High Proportion Has Integration of HBV DNA into Hepatocyte DNA and No Cirrhosis.

Clin Gastroenterol Hepatol 2020 02 25;18(2):449-456. Epub 2019 Jun 25.

Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; State Key Laboratory of Liver Research, University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China. Electronic address:

Background & Aims: In some individuals with undetectable serum levels of hepatitis B surface antigen (HBsAg), hepatitis B virus (HBV) DNA can still be detected in serum or hepatocytes and HBV replicates at low levels-this is called occult HBV infection (OBI). OBI has been associated with increased risk of hepatocellular carcinoma (HCC). We investigated the incidence of OBI in patients with HCC and other liver diseases. We also investigated whether, in patients with OBI and HCC, HBV DNA has integrated into the DNA of hepatocytes.

Methods: We collected clinical information and liver tissues from 110 HBsAg-negative patients (90 with HCC and 20 without HCC; median ages at surgical resection and biopsy collection, 64.1 and 48.6 years, respectively) who underwent liver resection or liver biopsy from November 2002 through July 2017 in Hong Kong. HBV DNA and covalently closed circular DNA (cccDNA) were analyzed and quantified by PCR in liver tissues. Integration of HBV DNA into the DNA of liver cells was detected by Alu-PCR.

Results: Of the 90 HBsAg-negative patients with HCC, 18 had alcoholic liver disease (20%), 14 had non-alcoholic fatty liver disease or steatohepatitis (16%), 2 had primary biliary cholangitis, 2 had recurrent pyogenic cholangitis, 1 had autoimmune hepatitis, and 53 had none of these (59%). Among the 20 patients without HCC, 7 had non-alcoholic fatty liver disease or steatohepatitis, 7 had primary biliary cholangitis, and 6 had autoimmune hepatitis. OBI was detected in 62/90 patients with HCC (69%) and 3/20 patients without HCC (15%) (P < .0001). cccDNA was detectable in liver cells of 29 patients with HCC and OBI (47%) and HBV DNA had integrated into DNA of liver cells of 43 patients with HCC and OBI (69%); cccDNA and integrated HBV DNA were not detected in the 3 patients who had OBI without HCC. There were 29 patients with integration of HBV DNA among 33 patients with undetectable cccDNA in liver tissues (88%) and 14 patients with integration of HBV DNA among the 29 patients with cccDNA in liver tissues (48%) (P = .001). HBV DNA was found to integrate near genes associated with hepatocarcinogenesis, such as those encoding telomerase reverse transcriptase, lysine methyltransferase 2B, and cyclin A2. Among the 43 patients with integration of HBV DNA, 39 (91%) did not have cirrhosis.

Conclusions: In an analysis of clinical data and liver tissues from 90 HBsAg-negative patients with HCC, we found that almost 70% had OBI, of whom 70% had integration of HBV DNA into liver cell DNA; 90% of these patients did not have cirrhosis. HBV DNA integrated near hepatic oncogenes; these integrations might promote development of liver cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cgh.2019.06.029DOI Listing
February 2020
-->