Publications by authors named "Seong-Woon Yu"

60 Publications

GSK3B induces autophagy by phosphorylating ULK1.

Exp Mol Med 2021 Mar 2;53(3):369-383. Epub 2021 Mar 2.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.

Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells. Here, we report that following insulin withdrawal, GSK3B directly interacted with and activated ULK1 via phosphorylation of S405 and S415 within the GABARAP-interacting region. Phosphorylation of these residues facilitated the interaction of ULK1 with MAP1LC3B and GABARAPL1, while phosphorylation-defective mutants of ULK1 failed to do so and could not induce autophagy flux. Furthermore, high phosphorylation levels of ULK1 at S405 and S415 were observed in human pancreatic cancer cell lines, all of which are known to exhibit high levels of autophagy. Our results reveal the importance of GSK3B-mediated phosphorylation for ULK1 regulation and autophagy induction and potentially for tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s12276-021-00570-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080724PMC
March 2021

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).

Autophagy 2021 Jan 8;17(1):1-382. Epub 2021 Feb 8.

University of Crete, School of Medicine, Laboratory of Clinical Microbiology and Microbial Pathogenesis, Voutes, Heraklion, Crete, Greece; Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology (IMBB), Heraklion, Crete, Greece.

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2020.1797280DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996087PMC
January 2021

A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks.

Sci Adv 2020 Sep 25;6(39). Epub 2020 Sep 25.

Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea.

There has been a great deal of interest in the development of technologies for actively manipulating neural networks in vitro, providing natural but simplified environments in a highly reproducible manner in which to study brain function and related diseases. Platforms for these in vitro neural networks require precise and selective neural connections at the target location, with minimal external influences, and measurement of neural activity to determine how neurons communicate. Here, we report a neuron-loaded microrobot for selective connection of neural networks via precise delivery to a gap between two neural clusters by an external magnetic field. In addition, the extracellular action potential was propagated from one cluster to the other through the neurons on the microrobot. The proposed technique shows the potential for use in experiments to understand how neurons communicate in the neural network by actively connecting neural clusters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abb5696DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518876PMC
September 2020

Autophagy as a decisive process for cell death.

Exp Mol Med 2020 06 26;52(6):921-930. Epub 2020 Jun 26.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.

Autophagy is an intracellular catabolic pathway in which cellular constituents are engulfed by autophagosomes and degraded upon autophagosome fusion with lysosomes. Autophagy serves as a major cytoprotective process by maintaining cellular homeostasis and recycling cytoplasmic contents. However, emerging evidence suggests that autophagy is a primary mechanism of cell death (autophagic cell death, ACD) and implicates ACD in several aspects of mammalian physiology, including tumor suppression and psychological disorders. However, little is known about the physiological roles and molecular mechanisms of ACD. In this review, we document examples of ACD and discuss recent progress in our understanding of its molecular mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s12276-020-0455-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338414PMC
June 2020

Cx3cr1-driven Atg7 deletion in adult mice induces intestinal adhesion.

Mol Brain 2020 06 8;13(1):88. Epub 2020 Jun 8.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea.

Microglia are macrophages resident in the central nervous system. C-X3-C motif chemokine receptor 1 (CX3CR1) is a G-coupled seven-transmembrane protein exclusively expressed in the mononuclear phagocyte system including microglia, as well as intestinal and kidney macrophages. Cx3cr1 mice express Cre recombinase in a tamoxifen-inducible manner and have been widely used to delete target genes in microglia, since microglia are long-lived cells and outlive peripheral macrophages, which continuously turn over and lose their gene modification over time. ATG7 is an E1-like enzyme that plays an essential role in two ubiquitin-like reactions, ATG12-ATG5 conjugation and LC3-lipidation in autophagy. To study the role of ATG7 in adult microglia, we generated Cx3cr1:Atg7 mice and deleted Atg7 at the age of 8 weeks, and found induction of intestinal adhesion. Since intestinal adhesion is caused by excessive inflammation, these results suggest that deletion of Atg7 in intestinal macrophages even for a short time results in inflammation that cannot be rescued by replenishment with wild-type intestinal macrophages. Our finding suggests that, depending on the roles of the gene, Cx3cr1-Cre-mediated gene deletion may yield unanticipated physiological outcomes outside the central nervous system, and careful necropsy is necessary to assure the microglia-specific roles of the target gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13041-020-00630-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281947PMC
June 2020

Fas-apoptotic inhibitory molecule 2 localizes to the lysosome and facilitates autophagosome-lysosome fusion through the LC3 interaction region motif-dependent interaction with LC3.

FASEB J 2020 01 20;34(1):161-179. Epub 2019 Nov 20.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.

Fas-apoptotic inhibitory molecule 2 (FAIM2) is a member of the transmembrane BAX inhibitor motif-containing (TMBIM) family. TMBIM family is comprised of six anti-apoptotic proteins that suppress cell death by regulating endoplasmic reticulum Ca homeostasis. Recent studies have implicated two TMBIM proteins, GRINA and BAX Inhibitor-1, in mediating cytoprotection via autophagy. However, whether FAIM2 plays a role in autophagy has been unknown. Here we show that FAIM2 localizes to the lysosomes at basal state and facilitates autophagy through interaction with microtubule-associated protein 1 light chain 3 proteins in human neuroblastoma SH-SY5Y cells. FAIM2 overexpression increased autophagy flux, while autophagy flux was impaired in shRNA-mediated knockdown (shFAIM2) cells, and the impairment was more evident in the presence of rapamycin. In shFAIM2 cells, autophagosome maturation through fusion with lysosomes was impaired, leading to accumulation of autophagosomes. A functional LC3-interacting region motif within FAIM2 was essential for the interaction with LC3 and rescue of autophagy flux in shFAIM2 cells while LC3-binding property of FAIM2 was dispensable for the anti-apoptotic function in response to Fas receptor-mediated apoptosis. Suppression of autophagosome maturation was also observed in a null mutant of Caenorhabditis elegans lacking xbx-6, the ortholog of FAIM2. Our study suggests that FAIM2 is a novel regulator of autophagy mediating autophagosome maturation through the interaction with LC3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201901626RDOI Listing
January 2020

Translocator protein (TSPO): the new story of the old protein in neuroinflammation.

BMB Rep 2020 Jan;53(1):20-27

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.

Translocator protein (TSPO), also known as peripheral benzodiazepine receptor, is a transmembrane protein located on the outer mitochondria membrane (OMM) and mainly expressed in glial cells in the brain. Because of the close correlation of its expression level with neuropathology and therapeutic efficacies of several TSPO binding ligands under many neurological conditions, TSPO has been regarded as both biomarker and therapeutic target, and the biological functions of TSPO have been a major research focus. However, recent genetic studies with animal and cellular models revealed unexpected results contrary to the anticipated biological importance of TSPO and cast doubt on the action modes of the TSPO-binding drugs. In this review, we summarize recent controversial findings on the discrepancy between pharmacological and genetic studies of TSPO and suggest some future direction to understand this old and mysterious protein. [BMB Reports 2020; 53(1): 20-27].
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999824PMC
January 2020

CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis.

Autophagy 2020 09 10;16(9):1598-1617. Epub 2019 Dec 10.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.

CASP9 (caspase 9) is a well-known initiator caspase which triggers intrinsic apoptosis. Recent studies also suggest various non-apoptotic roles of CASP9, including macroautophagy/autophagy regulation. However, the involvement of CASP9 in autophagy and its molecular mechanisms are not well understood. Here we report the non-apoptotic function of CASP9 in positive regulation of autophagy through maintenance of mitochondrial homeostasis. Growth factor or amino acid deprivation-induced autophagy activated CASP9, but without apoptotic features. Pharmacological inhibition or genetic ablation of decreased autophagy flux, while ectopic expression of CASP9 rescued autophagy defects. In knockout (KO) cells, initiation and elongation of phagophore membranes were normal, but sealing of the membranes and autophagosome maturation were impaired, and the lifetime of autophagosomes was prolonged. Ablation of caused an accumulation of inactive ATG3 and decreased lipidation of the Atg8-family members, most severely that of GABARAPL1. Moreover, it resulted in abnormal mitochondrial morphology with depolarization of the membrane potential, reduced reactive oxygen species production, and aberrant accumulation of mitochondrial fusion-fission proteins. CASP9 expression or exogenously added HO in the KO cells corrected the ATG3 level and lipidation status of Atg8-family members, and restored autophagy flux. Of note, only CASP9 expression but not HO rescued mitochondrial defects, revealing regulation of mitochondrial homeostasis by CASP9. Our findings suggest a new regulatory link between mitochondria and autophagy through CASP9 activity, especially for the proper operation of the Atg8-family conjugation system and autophagosome closure and maturation.

Abbreviations: AA: amino acid; ACD: autophagic cell death; ACTB: actin beta; ANXA5: annexin A5; APAF1: apoptotic peptidase activating factor 1; Atg: autophagy related; ATG16L1: autophagy related 16 like 1; BafA: bafilomycin A; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; CARD: caspase recruitment domain containing; CASP: caspase; CM-HDCFDA: chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; Δψm: mitochondrial membrane potential; DN: dominant-negative; DNM1L/DRP1: dynamin 1 like; EBSS: Earle's balanced salt solution; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; HCN: hippocampal neural stem cells; IAM: inner autophagosome membrane; INS: insulin; KO: knockout; LEHD: Z-LEHD-fmk; MAP1LC3: microtubule associated protein 1 light chain 3; MFN1: mitofusin 1; MFN2: mitofusin 2; MTORC1: mechanistic target of rapamycin kinase complex 1; PARP1: poly(ADP-ribose) polymerase 1; PBS: phosphate-buffered saline; PE: phosphatidylethanolamine; ROS: reactive oxygen species; sgRNA: single guide RNA; SR-SIM: super-resolution structured illumination microscopy; SQSTM1: sequestosome 1; STS: staurosporine; STX17: syntaxin 17; TMRE: tetramethylrhodamine ethyl ester; TUBB: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2019.1695398DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386608PMC
September 2020

Tanycytic TSPO inhibition induces lipophagy to regulate lipid metabolism and improve energy balance.

Autophagy 2020 07 30;16(7):1200-1220. Epub 2019 Aug 30.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology , Daegu, Republic of Korea.

Hypothalamic glial cells named tanycytes, which line the 3 ventricle (3V), are components of the hypothalamic network that regulates a diverse array of metabolic functions for energy homeostasis. Herein, we report that TSPO (translocator protein), an outer mitochondrial protein, is highly enriched in tanycytes and regulates homeostatic responses to nutrient excess as a potential target for an effective intervention in obesity. Administration of a TSPO ligand, PK11195, into the 3V, and tanycyte-specific deletion of reduced food intake and elevated energy expenditure, leading to negative energy balance in a high-fat diet challenge. Ablation of tanycytic elicited AMPK-dependent lipophagy, breaking down lipid droplets into free fatty acids, thereby elevating ATP in a lipid stimulus. Our findings suggest that tanycytic TSPO affects systemic energy balance through macroautophagy/autophagy-regulated lipid metabolism, and highlight the physiological significance of TSPO in hypothalamic lipid sensing and bioenergetics in response to overnutrition.

Abbreviations: 3V: 3 ventricle; ACAC: acetyl-Coenzyme A carboxylase; AGRP: agouti related neuropeptide; AIF1/IBA1: allograft inflammatory factor 1; AMPK: AMP-activated protein kinase; ARC: arcuate nucleus; Atg: autophagy related; Bafilo: bafilomycin A; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CNS: central nervous system; COX4I1: cytochrome c oxidase subunit 4I1; FFA: free fatty acid; GFAP: glial fibrillary acidic protein; HFD: high-fat diet; ICV: intracerebroventricular; LAMP2: lysosomal-associated membrane protein 2; LD: lipid droplet; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MBH: mediobasal hypothalamus; ME: median eminence; MEF: mouse embryonic fibroblast; NCD: normal chow diet; NEFM/NFM: neurofilament medium; NPY: neuropeptide Y; OL: oleic acid; POMC: pro-opiomelanocortin-alpha; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; : retina and anterior neural fold homeobox; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RER: respiratory exchange ratio; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TG: triglyceride; TSPO: translocator protein; ULK1: unc-51 like kinase 1; VCO: carbon dioxide production; VMH: ventromedial hypothalamus; VO: oxygen consumption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2019.1659616DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7469491PMC
July 2020

Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits.

Autophagy 2020 03 24;16(3):512-530. Epub 2019 Jun 24.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.

Macroautophagy/autophagy is generally regarded as a cytoprotective mechanism, and it remains a matter of controversy whether autophagy can cause cell death in mammals. Here, we show that chronic restraint stress suppresses adult hippocampal neurogenesis in mice by inducing autophagic cell death (ACD) of hippocampal neural stem cells (NSCs). We generated NSC-specific, inducible conditional knockout mice and found that they had an intact number of NSCs and neurogenesis level under chronic restraint stress and were resilient to stress- or corticosterone-induced cognitive and mood deficits. Corticosterone treatment of adult hippocampal NSC cultures induced ACD via SGK3 (serum/glucocorticoid regulated kinase 3) without signs of apoptosis. Our results demonstrate that ACD is biologically important in a mammalian system and would be an attractive target for therapeutic intervention for psychological stress-induced disorders.: AAV: adeno-associated virus; ACD: autophagic cell death; ACTB: actin, beta; Atg: autophagy-related; ASCL1/MASH1: achaete-scute family bHLH transcription factor 1; BafA: bafilomycin A; BrdU: Bromodeoxyuridine/5-bromo-2'-deoxyuridine; CASP3: caspase 3; cKO: conditional knockout; CLEM: correlative light and electron microscopy; CORT: corticosterone; CRS: chronic restraint stress; DAB: 3,3'-diaminobenzidine; DCX: doublecortin; DG: dentate gyrus; GC: glucocorticoid; GFAP: glial fibrillary acidic protein; HCN: hippocampal neural stem; i.p.: intraperitoneal; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MKI67/Ki67: antigen identified by monoclonal antibody Ki 67; MWM: Morris water maze; Nec-1: necrostatin-1; NES: nestin; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NSC: neural stem cell; PCD: programmed cell death; PFA: paraformaldehyde; PX: Phox homology; PtdIns3P: phosphatidylinositol-3-phosphate; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; SGK: serum/glucocorticoid-regulated kinases; SGZ: subgranular zone; SOX2: SRY (sex determining region Y)-box 2; SQSTM1: sequestosome 1; STS: staurosporine; TAM: tamoxifen; Ulk1: unc-51 like kinase 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VIM: vimentin; WT: wild type; ZFYVE1: zinc finger, FYVE domain containing 1; Z-VAD/Z-VAD-FMK: pan-caspase inhibitor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2019.1630222DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999625PMC
March 2020

Autophagy Mediates Astrogenesis in Adult Hippocampal Neural Stem Cells.

Exp Neurobiol 2019 Apr 30;28(2):229-246. Epub 2019 Apr 30.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.

Neural stem cells (NSCs) have the ability to self-renew and differentiate into neurons, oligodendrocytes, and astrocytes. Highly dynamic nature of NSC differentiation requires the intimate involvement of catabolic processes such as autophagy. Autophagy is a major intracellular degradation pathway necessary for cellular homeostasis and remodeling. Autophagy is important for mammalian development and its role in neurogenesis has recently drawn much attention. However, little is known about how autophagy is associated with differentiation of NSCs into other neural lineages. Here, we report that autophagy plays a critical role in differentiation of adult rat hippocampal neural stem (HCN) cells into astrocytes. During differentiation, autophagy flux peaked at early time points, and remained high. Pharmacological or genetic suppression of autophagy by stable knockdown of Atg7, LC3 or CRISPR-Cas9-mediated knockout (KO) of p62 impaired astrogenesis, while reintroduction of p62 recovered astrogenesis in p62 KO HCN cells. Taken together, our findings suggest that autophagy plays a key role in astrogenesis in adult NSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5607/en.2019.28.2.229DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526118PMC
April 2019

Magnetically actuated microrobots as a platform for stem cell transplantation.

Sci Robot 2019 05;4(30)

Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, South Korea.

Magnetic microrobots were developed for three-dimensional culture and the precise delivery of stem cells in vitro, ex vivo, and in vivo. Hippocampal neural stem cells attached to the microrobots proliferated and differentiated into astrocytes, oligodendrocytes, and neurons. Moreover, microrobots were used to transport colorectal carcinoma cancer cells to tumor microtissue in a body-on-a-chip, which comprised an in vitro liver-tumor microorgan network. The microrobots were also controlled in a mouse brain slice and rat brain blood vessel. Last, microrobots carrying mesenchymal stem cells derived from human nose were manipulated inside the intraperitoneal cavity of a nude mouse. The results indicate the potential of microrobots for the culture and delivery of stem cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scirobotics.aav4317DOI Listing
May 2019

Parkin Promotes Mitophagic Cell Death in Adult Hippocampal Neural Stem Cells Following Insulin Withdrawal.

Front Mol Neurosci 2019 22;12:46. Epub 2019 Feb 22.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea.

Regulated cell death (RCD) plays a fundamental role in human health and disease. Apoptosis is the best-studied mode of RCD, but the importance of other modes has recently been gaining attention. We have previously demonstrated that adult rat hippocampal neural stem (HCN) cells undergo autophagy-dependent cell death (ADCD) following insulin withdrawal. Here, we show that Parkin mediates mitophagy and ADCD in insulin-deprived HCN cells. Insulin withdrawal increased the amount of depolarized mitochondria and their colocalization with autophagosomes. Insulin withdrawal also upregulated both mRNA and protein levels of Parkin, gene knockout of which prevented mitophagy and ADCD. c-Jun is a transcriptional repressor of Parkin and is degraded by the proteasome following insulin withdrawal. In insulin-deprived HCN cells, Parkin is required for Ca accumulation and depolarization of mitochondria at the early stages of mitophagy as well as for recognition and removal of depolarized mitochondria at later stages. In contrast to the pro-death role of Parkin during mitophagy, Parkin deletion rendered HCN cells susceptible to apoptosis, revealing distinct roles of Parkin depending on different modes of RCD. Taken together, these results indicate that Parkin is required for the induction of ADCD accompanying mitochondrial dysfunction in HCN cells following insulin withdrawal. Since impaired insulin signaling is implicated in hippocampal deficits in various neurodegenerative diseases and psychological disorders, these findings may help to understand the mechanisms underlying death of neural stem cells and develop novel therapeutic strategies aiming to improve neurogenesis and survival of neural stem cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnmol.2019.00046DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395409PMC
February 2019

Drp1-Zip1 Interaction Regulates Mitochondrial Quality Surveillance System.

Mol Cell 2019 01 20;73(2):364-376.e8. Epub 2018 Dec 20.

Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul 02841, Republic of Korea. Electronic address:

Mitophagy, a mitochondrial quality control process for eliminating dysfunctional mitochondria, can be induced by a response of dynamin-related protein 1 (Drp1) to a reduction in mitochondrial membrane potential (MMP) and mitochondrial division. However, the coordination between MMP and mitochondrial division for selecting the damaged portion of the mitochondrial network is less understood. Here, we found that MMP is reduced focally at a fission site by the Drp1 recruitment, which is initiated by the interaction of Drp1 with mitochondrial zinc transporter Zip1 and Zn entry through the Zip1-MCU complex. After division, healthy mitochondria restore MMP levels and participate in the fusion-fission cycle again, but mitochondria that fail to restore MMP undergo mitophagy. Thus, interfering with the interaction between Drp1 and Zip1 blocks the reduction of MMP and the subsequent mitophagic selection of damaged mitochondria. These results suggest that Drp1-dependent fission provides selective pressure for eliminating "bad sectors" in the mitochondrial network, serving as a mitochondrial quality surveillance system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2018.11.009DOI Listing
January 2019

TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia.

Autophagy 2019 05 13;15(5):753-770. Epub 2018 Dec 13.

a Department of Brain and Cognitive Sciences , Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu , Republic of Korea.

Macroautophagy/autophagy is a lysosome-dependent catabolic process for the turnover of proteins and organelles in eukaryotes. Autophagy plays an important role in immunity and inflammation, as well as metabolism and cell survival. Diverse immune and inflammatory signals induce autophagy in macrophages through pattern recognition receptors, such as toll-like receptors (TLRs). However, the physiological role of autophagy and its signaling mechanisms in microglia remain poorly understood. Microglia are phagocytic immune cells that are resident in the central nervous system and share many characteristics with macrophages. Here, we show that autophagic flux and expression of autophagy-related (Atg) genes in microglia are significantly suppressed upon TLR4 activation by lipopolysaccharide (LPS), in contrast to their stimulation by LPS in macrophages. Metabolomics analysis of the levels of phosphatidylinositol (PtdIns) and its 3-phosphorylated form, PtdIns3P, in combination with bioinformatics prediction, revealed an LPS-induced reduction in the synthesis of PtdIns and PtdIns3P in microglia but not macrophages. Interestingly, inhibition of PI3K, but not MTOR or MAPK1/3, restored autophagic flux with concomitant dephosphorylation and nuclear translocation of FOXO3. A constitutively active form of FOXO3 also induced autophagy, suggesting FOXO3 as a downstream target of the PI3K pathway for autophagy inhibition. LPS treatment impaired phagocytic capacity of microglia, including MAP1LC3B/LC3-associated phagocytosis (LAP) and amyloid β (Aβ) clearance. PI3K inhibition restored LAP and degradation capacity of microglia against Aβ. These findings suggest a unique mechanism for the regulation of microglial autophagy and point to the PI3K-FOXO3 pathway as a potential therapeutic target to regulate microglial function in brain disorders. Abbreviations: Atg: autophagy-related gene; Aβ: amyloid-β; BafA1: bafilomycin A; BECN1: beclin 1, autophagy related; BMDM: bone marrow-derived macrophage; CA: constitutively active; CNS: central nervous system; ZFYVE1/DFCP1: zinc finger, FYVE domain containing 1; FOXO: forkhead box O; ELISA:enzyme-linked immunosorbent assay; HBSS: Hanks balanced salt solution; LAP: LC3-associated phagocytosis; MAP1LC3B: microtubule-associated protein 1 light chain 3; LPS: lipopolysaccharide; LY: LY294002; MTOR: mechanistic target of rapamycin kinase; PamCSK: N-palmitoyl-S-dipalmitoylglyceryl Cys-Ser-(Lys); PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PLA: proximity ligation assay; Poly(I:C): polyinosinic-polycytidylic acid; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; TLR: Toll-like receptor; TNF: tumor necrosis factor; TFEB: transcription factor EB; TSPO: translocator protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2018.1556946DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526818PMC
May 2019

Chronic restraint stress induces hippocampal memory deficits by impairing insulin signaling.

Mol Brain 2018 07 3;11(1):37. Epub 2018 Jul 3.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea.

Chronic stress is a psychologically significant factor that impairs learning and memory in the hippocampus. Insulin signaling is important for the development and cognitive function of the hippocampus. However, the relation between chronic stress and insulin signaling at the molecular level is poorly understood. Here, we show that chronic stress impairs insulin signaling in vitro and in vivo, and thereby induces deficits in hippocampal spatial working memory and neurobehavior. Corticosterone treatment of mouse hippocampal neurons in vitro caused neurotoxicity with an increase in the markers of autophagy but not apoptosis. Corticosterone treatment impaired insulin signaling from early time points. As an in vivo model of stress, mice were subjected to chronic restraint stress. The chronic restraint stress group showed downregulated insulin signaling and suffered deficits in spatial working memory and nesting behavior. Intranasal insulin delivery restored insulin signaling and rescued hippocampal deficits. Our data suggest that psychological stress impairs insulin signaling and results in hippocampal deficits, and these effects can be prevented by intranasal insulin delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13041-018-0381-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029109PMC
July 2018

Distinct amyloid precursor protein processing machineries of the olfactory system.

Biochem Biophys Res Commun 2018 01 31;495(1):533-538. Epub 2017 Oct 31.

Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea; Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea. Electronic address:

Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aβ accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.10.153DOI Listing
January 2018

Differential spatial expression of peripheral olfactory neuron-derived BACE1 induces olfactory impairment by region-specific accumulation of β-amyloid oligomer.

Cell Death Dis 2017 08 10;8(8):e2977. Epub 2017 Aug 10.

Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Korea.

Olfactory dysfunction is a common symptom associated with neurodegenerative diseases including Alzheimer's disease (AD). Although evidence exists to suggest that peripheral olfactory organs are involved in the olfactory dysfunction that accompanies AD pathology, the underlying mechanisms are not fully understood. As confirmed using behavioral tests, transgenic mice overexpressing a Swedish mutant form of human amyloid precursor proteins exhibited olfactory impairments prior to evidence of cognitive impairment. By measuring the expression of tyrosine hydroxylase, we observed that specific regions of the olfactory bulb (OB) in Tg2576 mice, specifically the ventral portion exhibited significant decreases in the number of dopaminergic neurons in the periglomerular regions from the early stage of AD. To confirm the direct linkage between these olfactory impairments and AD-related pathology, β-site amyloid precursor protein cleaving enzyme 1 (BACE1)-the initiating enzyme in Aβ genesis-and β-amyloid peptide (Aβ), hallmarks of AD were analyzed. We found that an increase in BACE1 expression coincided with an elevation of amyloid-β (Aβ) oligomers in the ventral region of OB. Moreover, olfactory epithelium (OE), in particular the ectoturbinate in which axons of olfactory sensory neurons (OSNs) have direct connections with the dendrites of mitral/tufted cells in the ventral part of OB, exhibited significant decreases in both thickness and cell number even at early stages. This result suggests that Aβ oligomer toxicity in the OE may have induced a decline in the number of OSNs and functional impairment of the olfactory system. We first demonstrated that disproportionate levels of regional damage in the peripheral olfactory system may be a specific symptom of AD with Aβ oligomer accumulation occurring prior to damage within the CNS. This regional damage in the olfactory system early in the progression of AD may be closely related to AD-related pathological abnormality and olfactory dysfunction found in AD patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/cddis.2017.349DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596540PMC
August 2017

Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells.

J Biol Chem 2017 08 27;292(33):13795-13808. Epub 2017 Jun 27.

From the Department of Brain and Cognitive Sciences and

In the adult brain, programmed death of neural stem cells is considered to be critical for tissue homeostasis and cognitive function and is dysregulated in neurodegeneration. Previously, we have reported that adult rat hippocampal neural (HCN) stem cells undergo autophagic cell death (ACD) following insulin withdrawal. Because the apoptotic capability of the HCN cells was intact, our findings suggested activation of unique molecular mechanisms linking insulin withdrawal to ACD rather than apoptosis. Here, we report that phosphorylation of autophagy-associated protein p62 by AMP-activated protein kinase (AMPK) drives ACD and mitophagy in HCN cells. Pharmacological inhibition of AMPK or genetic ablation of the AMPK α2 subunit by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing suppressed ACD, whereas AMPK activation promoted ACD in insulin-deprived HCN cells. We found that following insulin withdrawal AMPK phosphorylated p62 at a novel site, Ser-293/Ser-294 (in rat and human p62, respectively). Phosphorylated p62 translocated to mitochondria and induced mitophagy and ACD. Interestingly, p62 phosphorylation at Ser-293 was not required for staurosporine-induced apoptosis in HCN cells. To the best of our knowledge, this is the first report on the direct phosphorylation of p62 by AMPK. Our data suggest that AMPK-mediated p62 phosphorylation is an ACD-specific signaling event and provide novel mechanistic insight into the molecular mechanisms in ACD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M117.780874DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566532PMC
August 2017

Angiotensin II Causes Apoptosis of Adult Hippocampal Neural Stem Cells and Memory Impairment Through the Action on AMPK-PGC1α Signaling in Heart Failure.

Stem Cells Transl Med 2017 06 28;6(6):1491-1503. Epub 2017 Feb 28.

Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Data are limited on the mechanisms underlying memory impairment in heart failure (HF). We hypothesized that angiotensin II (Ang II) may determine the fate of adult hippocampal neural stem cells (HCNs), a cause of memory impairment in HF. HCNs with neurogenesis potential were isolated and cultured from adult rat hippocampi. Ang II decreased HCN proliferation in dose- and time-dependent manners. Moreover, Ang II treatment (1 µM) for 48 hours induced apoptotic death, which was attenuated by pretreatment with Ang II receptor blockers (ARBs). Ang II increased mitochondrial reactive oxygen species (ROS) levels, which was related to mitochondrial morphological changes and functional impairment. Moreover, ROS activated the AMP-activated protein kinase (AMPK) and consequent peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) expression, causing cell apoptosis. In the HF rat model induced by left anterior descending artery ligation, ARB ameliorated the spatial memory ability which decreased 10 weeks after ischemia. In addition, neuronal cell death, especially of newly born mature neurons, was observed in HF rat hippocampi. ARB decreased cell death and promoted the survival of newly born neural precursor cells and mature neurons. In conclusion, Ang II caused HCN apoptosis through mitochondrial ROS formation and subsequent AMPK-PGC1α signaling. ARB improved learning and memory behaviors impaired by neuronal cell death in the HF animal model. These findings suggest that HCN is one treatment target for memory impairment in HF and that ARBs have additional benefits in HF combined with memory impairment. Stem Cells Translational Medicine 2017;6:1491-1503.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/sctm.16-0382DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5689768PMC
June 2017

Neuroprotective Effects of an Erythropoietin-Derived Peptide in PC1 2 Cells under Oxidative Stress.

CNS Neurol Disord Drug Targets 2016 ;15(8):927-934

Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, Republic of Korea.

Erythropoietin (EPO) has been shown to be a key cytokine in the production of erythrocytes from erythroblasts. Recently, attempts have been made to adopt EPO as a drug target for neuroprotection in selected neurological pathologies. In the current study, a novel EPO-derived peptide which mimics the weak binding site of EPO to its receptor (MK-X) was generated. Experimental results demonstrated that MK-X was able to ameliorate neuronal death due to reactive oxygen species and conditions of oxidative stress similar to EPO. In addition, MK-X induced long-lasting Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt activation. Furthermore, treatment with inhibitors of ERK1/2 and Akt abolished the neuroprotective effect of MK-X. Unlike EPO, however, MK-X did not induce cellular proliferation. Collectively, the results of the current study suggested that MK-X may be useful as a novel neuroprotective reagent.
View Article and Find Full Text PDF

Download full-text PDF

Source
October 2017

Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression.

Autophagy 2016 11 17;12(11):2009-2025. Epub 2016 Aug 17.

a Department of Brain & Cognitive Sciences , Daegu Gyeongbuk Institute of Science & Technology , Dalseong-gun , Daegu , Korea.

Hypothalamic AMP-activated protein kinase (AMPK) plays important roles in the regulation of food intake by altering the expression of orexigenic or anorexigenic neuropeptides. However, little is known about the mechanisms of this regulation. Here, we report that hypothalamic AMPK modulates the expression of NPY (neuropeptide Y), an orexigenic neuropeptide, and POMC (pro-opiomelanocortin-α), an anorexigenic neuropeptide, by regulating autophagic activity in vitro and in vivo. In hypothalamic cell lines subjected to low glucose availability such as 2-deoxy-d-glucose (2DG)-induced glucoprivation or glucose deprivation, autophagy was induced via the activation of AMPK, which regulates ULK1 and MTOR complex 1 followed by increased Npy and decreased Pomc expression. Pharmacological or genetic inhibition of autophagy diminished the effect of AMPK on neuropeptide expression in hypothalamic cell lines. Moreover, AMPK knockdown in the arcuate nucleus of the hypothalamus decreased autophagic activity and changed Npy and Pomc expression, leading to a reduction in food intake and body weight. AMPK knockdown abolished the orexigenic effects of intraperitoneal 2DG injection by decreasing autophagy and changing Npy and Pomc expression in mice fed a high-fat diet. We suggest that the induction of autophagy is a possible mechanism of AMPK-mediated regulation of neuropeptide expression and control of feeding in response to low glucose availability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2016.1215382DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103348PMC
November 2016

Systematic Analysis of Translocator Protein 18 kDa (TSPO) Ligands on Toll-like Receptors-mediated Pro-inflammatory Responses in Microglia and Astrocytes.

Exp Neurobiol 2016 Oct 18;25(5):262-268. Epub 2016 Oct 18.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.

Translocator protein 18 kDa (TSPO) is a mitochondrial protein highly expressed on reactive microglia and astrocytes, and is considered as a biomarker for neurodegeneration and brain damage, especially neuroinflammation. Toll-like receptors (TLRs) are closely related with inflammatory responses of microglia and astrocytes and these signaling pathways regulate neuroinflammation. Previous reports have identified the anti-inflammatory effects of TSPO ligands, however study of their effects in relation to the TLR signaling was limited. Here, we investigated the effects of five representative TSPO ligands on microglia and astrocytes following activation by various TLR ligands. Our results show that TSPO ligands reduce the pro-inflammatory response elicited by the TLR ligands with more profound effects on microglia than astrocytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5607/en.2016.25.5.262DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081472PMC
October 2016

Neuroprotective Effects of an Erythropoietin-Derived Peptide in PC12 Cells under Oxidative Stress.

CNS Neurol Disord Drug Targets 2016 Aug 13. Epub 2016 Aug 13.

Daegu Gyeongbuk Institute of Science and Technology (DGIST) - Department of Brain & Cognitive Sciences, Graduate School Daegu, Korea, Democratic People`s Republic of Korea.

Erythropoietin (EPO) has been shown to be a key cytokine in the production of erythrocytes from erythroblasts. Recently, attempts have been made to adopt EPO as a drug target for neuroprotection in selected neurological pathologies. In the current study, a novel EPO-derived peptide which mimics the weak binding site of EPO to its receptor (MK-X) was generated. Experimental results demonstrated that MK-X was able to ameliorate neuronal death due to reactive oxygen species and conditions of oxidative stress similar to EPO. In addition, MK-X induced long-lasting Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt activation. Furthermore, treatment with inhibitors of ERK1/2 and Akt abolished the neuroprotective effect of MK-X. Unlike EPO, however, MK-X did not induce cellular proliferation. Collectively, the results of the current study suggested that MK-X may be useful as a novel neuroprotective reagent.
View Article and Find Full Text PDF

Download full-text PDF

Source
August 2016

Mediation of Autophagic Cell Death by Type 3 Ryanodine Receptor (RyR3) in Adult Hippocampal Neural Stem Cells.

Front Cell Neurosci 2016 6;10:116. Epub 2016 May 6.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu, South Korea.

Cytoplasmic Ca(2+) actively engages in diverse intracellular processes from protein synthesis, folding and trafficking to cell survival and death. Dysregulation of intracellular Ca(2+) levels is observed in various neuropathological states including Alzheimer's and Parkinson's diseases. Ryanodine receptors (RyRs) and inositol 1,4,5-triphosphate receptors (IP3Rs), the main Ca(2+) release channels located in endoplasmic reticulum (ER) membranes, are known to direct various cellular events such as autophagy and apoptosis. Here we investigated the intracellular Ca(2+)-mediated regulation of survival and death of adult hippocampal neural stem (HCN) cells utilizing an insulin withdrawal model of autophagic cell death (ACD). Despite comparable expression levels of RyR and IP3R transcripts in HCN cells at normal state, the expression levels of RyRs-especially RyR3-were markedly upregulated upon insulin withdrawal. While treatment with the RyR agonist caffeine significantly promoted the autophagic death of insulin-deficient HCN cells, treatment with its inhibitor dantrolene prevented the induction of autophagy following insulin withdrawal. Furthermore, CRISPR/Cas9-mediated knockout of the RyR3 gene abolished ACD of HCN cells. This study delineates a distinct, RyR3-mediated ER Ca(2+) regulation of autophagy and programmed cell death in neural stem cells. Our findings provide novel insights into the critical, yet understudied mechanisms underlying the regulatory function of ER Ca(2+) in neural stem cell biology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2016.00116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858590PMC
May 2016

A translocator protein 18 kDa ligand, Ro5-4864, inhibits ATP-induced NLRP3 inflammasome activation.

Biochem Biophys Res Commun 2016 06 19;474(3):587-593. Epub 2016 Apr 19.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea. Electronic address:

Ro5-4864 and PK11195, prototypical synthetic ligands of translocator protein 18 kDa (TSPO), have shown anti-inflammatory effects in several models of inflammatory diseases; however, their biochemical mechanisms remain poorly understood. Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation as a part of the innate immune system, has been implicated in a variety of inflammatory diseases. Here, we demonstrate for the first time that TSPO ligands, especially Ro5-4864, potently suppressed ATP-induced NLRP3 inflammasome activation in THP-1 and BMDM cells. Detailed action mechanism was further investigated in THP-1 cells. Ro5-4864 efficiently attenuated NLRP3 translocation to mitochondria, inflammasome assembly/oligomerization, activation of caspase-1, and subsequent secretion of the mature forms of interleukin-1β and -18. Ro5-4864 also reduced the production of mitochondrial superoxide and preserved the mitochondrial membrane potential in ATP-treated cells, suggesting that Ro5-4864 may act on mitochondria or more upstream targets in NLRP3 inflammasome signaling. We also observed the distinct effects of the TSPO ligands between THP-1 monocytes and macrophages, which suggested different NLRP3 inflammasome signaling depending on cell type. Collectively, our novel findings demonstrate that Ro5-4864 effectively inhibited ATP-induced NLRP3 inflammasome activation through the prevention of mitochondrial perturbation. Our results indicate Ro5-4864 as a promising candidate for the treatment of NLRP3 inflammasome-related diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2016.04.080DOI Listing
June 2016

Control of adult neurogenesis by programmed cell death in the mammalian brain.

Mol Brain 2016 Apr 21;9:43. Epub 2016 Apr 21.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711-873, Republic of Korea.

The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13041-016-0224-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839132PMC
April 2016

Alternatively activated brain-infiltrating macrophages facilitate recovery from collagenase-induced intracerebral hemorrhage.

Mol Brain 2016 Apr 19;9:42. Epub 2016 Apr 19.

Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Background: Intracerebral hemorrhage (ICH) is one of the major causes of stroke. After onset of ICH, massive infiltration of macrophages is detected in the peri-hematoma regions. Still, the function of these macrophages in ICH has not been completely elucidated.

Results: In a collagenase-induced ICH model, CX3CR1(+) macrophages accumulated in the peri-hematoma region. Characterization of these macrophages revealed expression of alternatively activated (M2) macrophage markers. In the macrophage-depleted mice, ICH-induced brain lesion volume was larger and neurological deficits were more severe compared to those of control mice, indicating a protective role of these macrophages in ICH. In the ICH-injured brain, mannose receptor-expressing macrophages increased at a delayed time point after ICH, indicating M2 polarization of the brain-infiltrating macrophages in the brain microenvironment. To explore this possibility, bone marrow-derived macrophages (BMDM) were co-cultured with mouse brain glial cells and then tested for activation phenotype. Upon co-culture with glia, the number of mannose receptor-positive M2 macrophages was significantly increased. Furthermore, treatment with glia-conditioned media increased the number of BMDM of M2 phenotype.

Conclusions: In this study, our data suggest that brain-infiltrating macrophages after ICH are polarized to the M2 phenotype by brain glial cells and thereby contribute to recovery from ICH injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13041-016-0225-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837536PMC
April 2016

Valosin-containing protein is a key mediator between autophagic cell death and apoptosis in adult hippocampal neural stem cells following insulin withdrawal.

Mol Brain 2016 Mar 22;9:31. Epub 2016 Mar 22.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 711-873, Republic of Korea.

Background: Programmed cell death (PCD) plays essential roles in the regulation of survival and function of neural stem cells (NSCs). Abnormal regulation of this process is associated with developmental and degenerative neuronal disorders. However, the mechanisms underlying the PCD of NSCs remain largely unknown. Understanding the mechanisms of PCD in NSCs is crucial for exploring therapeutic strategies for the treatment of neurodegenerative diseases.

Result: We have previously reported that adult rat hippocampal neural stem (HCN) cells undergo autophagic cell death (ACD) following insulin withdrawal without apoptotic signs despite their normal apoptotic capabilities. It is unknown how interconnection between ACD and apoptosis is mediated in HCN cells. Valosin-containing protein (VCP) is known to be essential for autophagosome maturation in mammalian cells. VCP is abundantly expressed in HCN cells compared to hippocampal tissue and neurons. Pharmacological and genetic inhibition of VCP at basal state in the presence of insulin modestly impaired autophagic flux, consistent with its known role in autophagosome maturation. Of note, VCP inaction in insulin-deprived HCN cells significantly decreased ACD and down-regulated autophagy initiation signals with robust induction of apoptosis. Overall autophagy level was also substantially reduced, suggesting the novel roles of VCP at initial step of autophagy.

Conclusion: Taken together, these data demonstrate that VCP may play an essential role in the initiation of autophagy and mediation of crosstalk between ACD and apoptosis in HCN cells when autophagy level is high upon insulin withdrawal. This is the first report on the role of VCP in regulation of NSC cell death. Elucidating the mechanism by which VCP regulates the crosstalk of ACD and apoptosis will contribute to understanding the molecular mechanism of PCD in NSCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13041-016-0212-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4802725PMC
March 2016

Autophagy for the quality control of adult hippocampal neural stem cells.

Brain Res 2016 Oct 9;1649(Pt B):166-172. Epub 2016 Mar 9.

Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea. Electronic address:

Autophagy plays an important role in neurodegeneration, as well as in normal brain development and function. Recent studies have also implicated autophagy in the regulation of stemness and neurogenesis in neural stem cells (NSCs). However, little is known regarding the roles of autophagy in NSC biology. It has been shown that in addition to cytoprotective roles of autophagy, pro-death autophagy, or ׳autophagic cell death (ACD),' regulates the quantity of adult NSCs. A tight regulation of survival and death of NSCs residing in the neurogenic niches through programmed cell death (PCD) is critical for maintenance of adult neurogenesis. ACD plays a primary role in the death of adult hippocampal neural stem (HCN) cells following insulin withdrawal. Despite the normal apoptotic capability of HCN cells, they are committed to death by autophagy following insulin withdrawal, suggesting the existence of a unique regulatory program that controls the mode of cell death. We propose that dual roles of autophagy for maintenance of NSC pluripotency, as well as for elimination of defective NSCs, may serve as a combined NSC quality control mechanism. This article is part of a Special Issue entitled SI:Autophagy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2016.02.048DOI Listing
October 2016
-->