Publications by authors named "Seong Nyeon Kim"

2 Publications

  • Page 1 of 1

PVP-stabilized PtRu nanozymes with peroxidase-like activity and its application for colorimetric and fluorometric glucose detection.

Colloids Surf B Biointerfaces 2021 Apr 24;204:111783. Epub 2021 Apr 24.

Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea. Electronic address:

Nanozymes have significant advantages over natural enzymes. The intrinsic peroxidase-like activity of Pt-based nanomaterials can be enhanced by alloying with other transition metals, such as Ru, that have great catalytic activity. In this study, we used polyvinylpyrrolidone (PVP) to synthesize well-dispersed and homogeneous nanostructures. PVP-stabilized Pt-Ru nanozymes (PVP/PtRu NZs) were synthesized and characterized. The PVP/PtRu NZs had an average size of 3.54 ± 0.84 nm and exhibited an intense peroxidase-like activity. The PVP/PtRu NZs were used as peroxidase mimics for colorimetric and fluorometric glucose determination by the glucose oxidase and PVP/PtRu NZs cascade reaction. In the colorimetric assay, the linearly detectable range was 0.25-3.0 mM, with an R and limit of detection (LOD) of 0.988 and 138 μM, respectively. In the fluorometric assay, a linear relationship was found when the glucose concentration was between 5.0 and 300 μM (R = 0.997), with an LOD of 1.11 μM. Compared to the colorimetric assay, the fluorometric assay had greater sensitivity and a lower detection limit for the determination of glucose. Moreover, the PVP/PtRu NZs had high storage stability over a month and great recovery values in human serum and artificial urine, with a range of 94-106 %. From these results, PVP/PtRu NZs are expected to be used as promising peroxidase mimics in various fields such as biosensing, pharmaceutical processing, and the food industry.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111783DOI Listing
April 2021

Cell-based electrochemical cytosensor for rapid and sensitive evaluation of the anticancer effects of saponin on human malignant melanoma cells.

Bioelectrochemistry 2021 Mar 31;140:107813. Epub 2021 Mar 31.

Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea. Electronic address:

Discovering new anticancer agents and analyzing their activities is a vital part of drug development, but it requires a huge amount of time and resources, leading to the increasing demands for more-effective techniques. Herein, a novel and simple cell-based electrochemical biosensor, referred to as a cytosensor, was proposed to investigate the electrochemical behavior of human skin malignant melanoma (SK-MEL28) cells and the anticancer effect of saponin on cell viability. To enhance both electrocatalytic properties and biocompatibility, gold nanoparticles were electrochemically deposited onto a conductive substrate, and poly-L-lysine was further added to the electrode surface. Electric signals from SK-MEL28 cells on the electrodes were obtained from cyclic voltammetry and differential pulse voltammetry. The cathodic peak current was proportional to the cell viability and showed a detection range of 2,880-40,000 cells per device with an excellent linear cell number-intensity relationship (R= 0.9952). Furthermore, the anticancer effect of saponin on SK-MEL28 cells was clearly established at concentrations higher than 20 μM, which was highly consistent with conventional assays. Moreover, the developed electrochemical cytosensor for evaluating anticancer effects enabled rapid (<2 min), sensitive (LOQ: 2,880cells/device), and non-invasive measurements, thus providing a new avenue for assessing the anticancer drugs in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2021.107813DOI Listing
March 2021