Publications by authors named "Senthil Chinnakannan"

12 Publications

  • Page 1 of 1

MAIT cell activation augments adenovirus vector vaccine immunogenicity.

Science 2021 01;371(6528):521-526

Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8 T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aax8819DOI Listing
January 2021

Detection of neutralising antibodies to SARS-CoV-2 to determine population exposure in Scottish blood donors between March and May 2020.

Euro Surveill 2020 10;25(42)

Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.

BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2807/1560-7917.ES.2020.25.42.2000685DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7651873PMC
October 2020

Viral vectored hepatitis C virus vaccines generate pan-genotypic T cell responses to conserved subdominant epitopes.

Vaccine 2020 07 9;38(32):5036-5048. Epub 2020 Jun 9.

Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, OX1 3SY, United Kingdom; Jenner Institute, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, United Kingdom. Electronic address:

Background: Viral genetic variability presents a major challenge to the development of a prophylactic hepatitis C virus (HCV) vaccine. A promising HCV vaccine using chimpanzee adenoviral vectors (ChAd) encoding a genotype (gt) 1b non-structural protein (ChAd-Gt1b-NS) generated high magnitude T cell responses. However, these T cells showed reduced cross-recognition of dominant epitope variants and the vaccine has recently been shown to be ineffective at preventing chronic HCV. To address the challenge of viral diversity, we developed ChAd vaccines encoding HCV genomic sequences that are conserved between all major HCV genotypes and adjuvanted by truncated shark invariant chain (sIi).

Methods: Age-matched female mice were immunised intramuscularly with ChAd (10 infectious units) encoding gt-1 and -3 (ChAd-Gt1/3) or gt-1 to -6 (ChAd-Gt1-6) conserved segments spanning the HCV proteome, or gt-1b (ChAd-Gt1b-NS control), with immunogenicity assessed 14-days post-vaccination.

Results: Conserved segment vaccines, ChAd-Gt1/3 and ChAd-Gt1-6, generated high-magnitude, broad, and functional CD4 and CD8 T cell responses. Compared to the ChAd-Gt1b-NS vaccine, these vaccines generated significantly greater responses against conserved non-gt-1 antigens, including conserved subdominant epitopes that were not targeted by ChAd-Gt1b-NS. Epitopes targeted by the conserved segment HCV vaccine induced T cells, displayed 96.6% mean sequence homology between all HCV subtypes (100% sequence homology for the majority of genotype-1, -2, -4 sequences and 94% sequence homology for gt-3, -6, -7, and -8) in contrast to 85.1% mean sequence homology for epitopes targeted by ChAd-Gt1b-NS induced T cells. The addition of truncated shark invariant chain (sIi) increased the magnitude, breadth, and cross-reactivity of the T cell response.

Conclusions: We have demonstrated that genetically adjuvanted ChAd vectored HCV T cell vaccines encoding genetic sequences conserved between genotypes are immunogenic, activating T cells that target subdominant conserved HCV epitopes. These pre-clinical studies support the use of conserved segment HCV T cell vaccines in human clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2020.05.042DOI Listing
July 2020

The Design and Development of a Multi-HBV Antigen Encoded in Chimpanzee Adenoviral and Modified Vaccinia Ankara Viral Vectors; A Novel Therapeutic Vaccine Strategy against HBV.

Vaccines (Basel) 2020 Apr 14;8(2). Epub 2020 Apr 14.

Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.

Chronic hepatitis B virus (HBV) infection affects 257 million people globally. Current therapies suppress HBV but viral rebound occurs on cessation of therapy; novel therapeutic strategies are urgently required. To develop a therapeutic HBV vaccine that can induce high magnitude T cells to all major HBV antigens, we have developed a novel HBV vaccine using chimpanzee adenovirus (ChAd) and modified vaccinia Ankara (MVA) viral vectors encoding multiple HBV antigens. ChAd vaccine alone generated very high magnitude HBV specific T cell responses to all HBV major antigens. The inclusion of a shark Invariant (SIi) chain genetic adjuvant significantly enhanced the magnitude of T-cells against HBV antigens. Compared to ChAd alone vaccination, ChAd-prime followed by MVA-boost vaccination further enhanced the magnitude and breadth of the vaccine induced T cell response. Intra-cellular cytokine staining study showed that HBV specific CD8+ and CD4+ T cells were polyfunctional, producing combinations of IFNγ, TNF-α, and IL-2. In summary, we have generated genetically adjuvanted ChAd and MVA vectored HBV vaccines with the potential to induce high-magnitude T cell responses through a prime-boost therapeutic vaccination approach. These pre-clinical studies pave the way for new studies of HBV therapeutic vaccination in humans with chronic hepatitis B infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/vaccines8020184DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7348829PMC
April 2020

Use of an Outbred Rat Hepacivirus Challenge Model for Design and Evaluation of Efficacy of Different Immunization Strategies for Hepatitis C Virus.

Hepatology 2020 03 11;71(3):794-807. Epub 2019 Oct 11.

Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.

Background And Aims: The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development.

Approach And Results: Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8 ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8 interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8 T-cell epitopes.

Conclusions: A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.30894DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154631PMC
March 2020

Divergent memory responses driven by adenoviral vectors are impacted by epitope competition.

Eur J Immunol 2019 09 29;49(9):1356-1363. Epub 2019 May 29.

Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.

Adenoviral vectors induce robust epitope-specific CD8 T cell responses. Within the repertoire of responses generated both conventional memory evolution and the phenomenon of memory inflation are seen. The rules governing which epitopes inflate are not fully known, but may include a role for both antigen processing and competition. To investigate this, we looked at memory generated from vectors targeting the Gp33-41 (KAVYNFATC/K9C) epitope from the gp of lymphocytic choriomeningitis virus (LCMV) in mice. This well-described epitope has both the Gp33-41 and Gp34-41 epitopes embedded within it. Vaccination with a full-length gp or a minigene Ad-Gp33/K9C vector-induced conventional memory responses against the immunodominant Gp33/K9C epitope but a strong inflationary response against the Gp34/A8C epitope. These responses showed sustained in vivo function, with complete protection against LCMV infectious challenge. Given the unexpected competition between epitopes seen in the minigene model, we further tested epitope competition using the full-length Ad-LacZ (β-galactosidase) model. Generation of an Ad-LacZ vector with a single amino acid disruption of the inflationary β-gal /D8V epitope transformed the β-gal /I8V epitope from conventional to inflationary memory. This work collectively demonstrates the importance of epitope competition within adenoviral vector inserts and is of relevance to future studies using adenoviral vectored immunogens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201948143DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772135PMC
September 2019

The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes.

Vaccine 2018 01 2;36(2):313-321. Epub 2017 Dec 2.

Peter Medawar Building and Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, UK. Electronic address:

Background: Hepatitis C virus (HCV) genomic variability is a major challenge to the generation of a prophylactic vaccine. We have previously shown that HCV specific T-cell responses induced by a potent T-cell vaccine encoding a single strain subtype-1b immunogen target epitopes dominant in natural infection. However, corresponding viral regions are highly variable at a population level, with a reduction in T-cell reactivity to these variants. We therefore designed and manufactured second generation simian adenovirus vaccines encoding genomic segments, conserved between viral genotypes and assessed these for immunogenicity.

Methods: We developed a computer algorithm to identify HCV genomic regions that were conserved between viral subtypes. Conserved segments below a pre-defined diversity threshold spanning the entire HCV genome were combined to create novel immunogens (1000-1500 amino-acids), covering variation in HCV subtypes 1a and 1b, genotypes 1 and 3, and genotypes 1-6 inclusive. Simian adenoviral vaccine vectors (ChAdOx) encoding HCV conserved immunogens were constructed. Immunogenicity was evaluated in C57BL6 mice using panels of genotype-specific peptide pools in ex-vivo IFN-ϒ ELISpot and intracellular cytokine assays.

Results: ChAdOx1 conserved segment HCV vaccines primed high-magnitude, broad, cross-reactive T-cell responses; the mean magnitude of total HCV specific T-cell responses was 1174 SFU/10 splenocytes for ChAdOx1-GT1-6 in C57BL6 mice targeting multiple genomic regions, with mean responses of 935, 1474 and 1112 SFU/10 against genotype 1a, 1b and 3a peptide panels, respectively. Functional assays demonstrated IFNg and TNFa production by vaccine-induced CD4 and CD8 T-cells. In silico analysis shows that conserved immunogens contain multiple epitopes, with many described in natural HCV infection, predicting immunogenicity in humans.

Conclusions: Simian adenoviral vectored vaccines encoding genetic segments that are conserved between all major HCV genotypes contain multiple T-cell epitopes and are highly immunogenic in pre-clinical models. These studies pave the way for the assessment of multi-genotypic HCV T-cell vaccines in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2017.10.079DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756538PMC
January 2018

Novel Bivalent Viral-Vectored Vaccines Induce Potent Humoral and Cellular Immune Responses Conferring Protection against Stringent Influenza A Virus Challenge.

J Immunol 2017 Jul 19. Epub 2017 Jul 19.

Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom;

Seasonal influenza viruses are a common cause of acute respiratory illness worldwide and generate a significant socioeconomic burden. Influenza viruses mutate rapidly, necessitating annual vaccine reformulation because traditional vaccines do not typically induce broad-spectrum immunity. In addition to seasonal infections, emerging pandemic influenza viruses present a continued threat to global public health. Pandemic influenza viruses have consistently higher attack rates and are typically associated with greater mortality compared with seasonal strains. Ongoing strategies to improve vaccine efficacy typically focus on providing broad-spectrum immunity; although B and T cells can mediate heterosubtypic responses, typical vaccine development will augment either humoral or cellular immunity. However, multipronged approaches that target several Ags may limit the generation of viral escape mutants. There are few vaccine platforms that can deliver multiple Ags and generate robust cellular and humoral immunity. In this article, we describe a novel vaccination strategy, tested preclinically in mice, for the delivery of novel bivalent viral-vectored vaccines. We show this strategy elicits potent T cell responses toward highly conserved internal Ags while simultaneously inducing high levels of Abs toward hemagglutinin. Importantly, these humoral responses generate long-lived plasma cells and generate Abs capable of neutralizing variant hemagglutinin-expressing pseudotyped lentiviruses. Significantly, these novel viral-vectored vaccines induce strong immune responses capable of conferring protection in a stringent influenza A virus challenge. Thus, this vaccination regimen induces lasting efficacy toward influenza. Importantly, the simultaneous delivery of dual Ags may alleviate the selective pressure that is thought to potentiate antigenic diversity in avian influenza viruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1600939DOI Listing
July 2017

Enhancing cellular immunogenicity of MVA-vectored vaccines by utilizing the F11L endogenous promoter.

Vaccine 2016 Jan 24;34(1):49-55. Epub 2015 Nov 24.

The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK.

Modified vaccinia virus Ankara (MVA)-vectored vaccines against malaria, influenza, tuberculosis and recently Ebola virus are in clinical development. Although this vector is safe and immunogenic in humans, efforts remain on-going to enhance immunogenicity through various approaches such as using stronger promoters to boost transgene expression. We previously reported that endogenous MVA promoters such as pB8 and pF11 increased transgene expression and immunogenicity, as compared to the conventional p7.5 promoter. Here, we show that both promoters also rivalled the mH5 promoter in enhancing MVA immunogenicity. We investigated the mechanisms behind this improved immunogenicity and show that it was a result of strong early transgene expression in vivo, rather than in vitro as would normally be assessed. Moreover, keeping the TK gene intact resulted in a modest improvement in immunogenicity. Utilizing pB8 or pF11 as ectopic promoters at the TK locus instead of their natural loci also increased transgene expression and immunogenicity. In addition to a reporter antigen, the pF11 promoter was tested with the expression of two vaccine antigens for which cellular immunogenicity was significantly increased as compared to the p7.5 promoter. Our data support the use of the pF11 and pB8 promoters for improved immunogenicity in future MVA-vectored candidate vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.11.028DOI Listing
January 2016

Investigation of IRES Insertion into the Genome of Recombinant MVA as a Translation Enhancer in the Context of Transcript Decapping.

PLoS One 2015 26;10(5):e0127978. Epub 2015 May 26.

The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, United Kingdom.

Recombinant modified vaccinia virus Ankara (MVA) has been used to deliver vaccine candidate antigens against infectious diseases and cancer. MVA is a potent viral vector for inducing high magnitudes of antigen-specific CD8+ T cells; however the cellular immune responses to a recombinant antigen in MVA could be further enhanced by increasing transgene expression. Previous reports showed the importance of utilizing an early poxviral promoter for increasing transgene expression and therefore enhancing cellular immune responses. However, the vaccinia D10 decapping enzyme is reported to target and decap vaccinia virus early transcripts - a mechanism that could limit the usefulness of early promoters in MVA viral vectors if this enzyme shows the same activity in this closely related virus. Therefore, we attempted to increase transgene expression in recombinant MVA by inserting the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) upstream of a transgene sequence that is controlled by the B8R early promoter, and assessed D10 enzyme decapping activity in MVA. The aim of the IRES element was to initiate translation of the transgene transcript (after the removal of the cap structure by the D10 decapping protein) in a cap-independent manner. Here, we report that overexpression of the D10 decapping protein, in trans, in MVA reduced growth and transgene expression; however, the IRES element was not able to compensate for the negative effect of the D10 decapping protein. Recombinant MVA with EMCV IRES induced levels of both gene expression and transcription that were similar to the control recombinant MVA, encoding the same transgene but without the IRES element. Both viruses were tested in BALB/c mice and induced similar magnitudes of epitope-specific CD8+ T cells. This work indicates that the MVA version of the D10 decapping enzyme, overexpressed using a plasmid, is functional, but its negative effect on transgene expression by recombinant MVA cannot be overcome by the use of the EMCV IRES inserted upstream of the transgene initiation codon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127978PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4444188PMC
April 2016

Different functions of the common P/V/W and V-specific domains of rinderpest virus V protein in blocking IFN signalling.

J Gen Virol 2014 Jan 24;95(Pt 1):44-51. Epub 2013 Oct 24.

The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK.

The V proteins of paramyxoviruses are composed of two evolutionarily distinct domains, the N-terminal 75 % being common to the viral P, V and W proteins, and not highly conserved between viruses, whilst the remaining 25 % consists of a cysteine-rich V-specific domain, which is conserved across almost all paramyxoviruses. There is evidence supporting a number of different functions of the V proteins of morbilliviruses in blocking the signalling pathways of type I and II IFNs, but it is not clear which domains of V are responsible for which activities and whether all these activities are required for effective blockade of IFN signalling. We have shown here that the two domains of rinderpest virus V protein have distinct functions: the N-terminal domain acted to bind STAT1, whilst the C-terminal V-specific domain interacted with the IFN receptor-associated kinases Jak1 and Tyk2. Effective blockade of IFN signalling required the intact V protein.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.056739-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917061PMC
January 2014

Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways.

PLoS One 2013 19;8(2):e57063. Epub 2013 Feb 19.

The Pirbright Institute, Pirbright, Surrey, United Kingdom.

Morbilliviruses form a closely related group of pathogenic viruses which encode three non-structural proteins V, W and C in their P gene. Previous studies with rinderpest virus (RPV) and measles virus (MeV) have demonstrated that these non-structural proteins play a crucial role in blocking type I (IFNα/β) and type II (IFNγ) interferon action, and various mechanisms have been proposed for these effects. We have directly compared four important morbilliviruses, rinderpest (RPV), measles virus (MeV), peste des petits ruminants virus (PPRV) and canine distemper virus (CDV). These viruses and their V proteins could all block type I IFN action. However, the viruses and their V proteins had varying abilities to block type II IFN action. The ability to block type II IFN-induced gene transcription correlated with co-precipitation of STAT1 with the respective V protein, but there was no correlation between co-precipitation of either STAT1 or STAT2 and the abilities of the V proteins to block type I IFN-induced gene transcription or the creation of the antiviral state. Further study revealed that the V proteins of RPV, MeV, PPRV and CDV could all interfere with phosphorylation of the interferon-receptor-associated kinase Tyk2, and the V protein of highly virulent RPV could also block the phosphorylation of another such kinase, Jak1. Co-precipitation studies showed that morbillivirus V proteins all form a complex containing Tyk2 and Jak1. This study highlights the ability of morbillivirus V proteins to target multiple components of the IFN signalling pathways to control both type I and type II IFN action.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057063PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576338PMC
August 2013