Publications by authors named "Seda Iflazoglu Mutlu"

6 Publications

  • Page 1 of 1

Potential ameliorative effect of dietary quercetin against lead-induced oxidative stress, biochemical changes, and apoptosis in laying Japanese quails.

Ecotoxicol Environ Saf 2022 Feb 17;231:113200. Epub 2022 Jan 17.

Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey.

Lead (Pb) is a widespread environmental pollutant which is a toxic threat to human and animal health. The present study was designed to evaluate the ameliorative role of quercetin in laying quails exposed to Pb. A total of 112 birds were randomly divided into four groups. The control group was fed with basal diet, the Pb group was fed with ration supplemented with Pb at the dose of 100 mg/kg (as Pb (II) acetate trihydrate), the Quercetin group was fed with ration supplemented with quercetin at the dose of 400 mg/kg, and the Pb+ Quercetin group was fed with ration supplemented with Pb at the dose of 100 mg/kg and quercetin at dose of 400 mg/kg. Results showed that serum total protein, glucose, albumin, and blood urea nitrogen (BUN) values of the Pb + Quercetin group partially improved with quercetin supplementation. Meanwhile, serum creatinine values of the Pb + Quercetin group was found to be significantly lower than that of the Pb group. Aspartate aminotransferase (AST) and alanine transaminase (ALT) enzyme activities in the Quercetin and Pb + Quercetin groups were similar to those of the Control group, unlike the Pb group. Moreover, alkaline phosphatase (ALP) enzyme activity of the Pb + Quercetin group significantly improved with the addition of quercetin. We also found that malondialdehyde (MDA) levels of the kidney, liver, and heart were significantly reduced by quercetin supplementation. The glutathione, catalase, and glutathione peroxidase activities of the kidney, liver, and heart tissue were increased by quercetin supplementation. These results were in line with the observed apoptotic markers. The expression of caspase-3 and caspase-9 were significantly decreased by quercetin supplementation. It may be concluded that dietary supplementation with quercetin ameliorates the toxic effects of Pb exposure by alleviating oxidative stress, biochemical changes, and apoptosis in quails.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113200DOI Listing
February 2022

The in-vivo assessment of Turkish propolis and its nano form on testicular damage induced by cisplatin.

J Integr Med 2021 09 6;19(5):451-459. Epub 2021 Aug 6.

Department of Electrical Electronics Engineering, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul 34083, Turkey.

Objective: Chemotherapeutic drugs, such as cisplatin (CP), which are associated with oxidative stress and apoptosis, may adversely affect the reproductive system. This study tests whether administration of propolis and nano-propolis (NP) can alleviate oxidative stress and apoptosis in rats with testicular damage induced by CP.

Methods: In this study, polymeric nanoparticles including propolis were synthesized with a green sonication method and characterized using Fourier transform-infrared spectroscopy, Brunauer-Emmett-Teller, and wet scanning transmission electron microscopy techniques. In total, 56 rats were divided into the following seven groups: control, CP, propolis, NP-10, CP + propolis, CP + NP-10, and CP + NP-30. Propolis (100 mg/kg), NP-10 (10 mg/kg), and NP-30 (30 mg/kg) treatments were administered by gavage daily for 21 d, and CP (3 mg/kg) was administered intraperitoneally in a single dose. After the experiment, oxidative stress parameters, namely, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT), and apoptotic pathways including B cell leukemia/lymphoma-2 protein (Bcl-2) and Bcl-2-associated X protein (Bax) were measured in testicular tissues. Furthermore, sperm quality and weights of the testis, epididymis, right cauda epididymis, seminal vesicles and prostate were evaluated.

Results: Propolis and NP (especially NP-30) were able to preserve oxidative balance (decreased MDA levels and increased GSH, CAT, and GPx activities) and activate apoptotic pathways (decreased Bax and increased Bcl-2) in the testes of CP-treated rats. Sperm motility in the control, CP, and CP + NP-30 groups were 60%, 48.75%, and 78%, respectively (P < 0.001). Especially, NP-30 application completely corrected the deterioration in sperm features induced by CP.

Conclusion: The results show that propolis and NP treatments mitigated the side effects of CP on spermatogenic activity, antioxidant situation, and apoptosis in rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joim.2021.08.002DOI Listing
September 2021

Protective role of yeast beta-glucan on lead acetate-induced hepatic and reproductive toxicity in rats.

Environ Sci Pollut Res Int 2021 Oct 25;28(38):53668-53678. Epub 2021 May 25.

Breeding Sheep and Goat Association, Elazig, Turkey.

Lead (Pb) is one of the most common environmental pollutants and causes adverse effects on human and animal health. This study aimed to evaluate the protective role of beta-glucan against hepatic and reproductive toxicity induced by lead acetate. A total of 28 Sprague Dawley male rats were distributed into four groups (n = 7). The control group was intraperitoneally injected saline (1 ml/kg b.w.) daily for 21 days, the Pb group was intraperitoneally injected lead acetate (15 mg/kg b.w.) daily for 21 days, the beta-glucan group was orally administrated beta-glucan (50 mg/kg b.w.) daily for 21 days, and the Pb + beta-glucan group was intraperitoneally injected lead acetate (15 mg/kg b.w.) daily following the oral administration of beta-glucan (50 mg/kg b.w.) daily for 21 days. Results showed that feed intake in the Pb + beta-glucan group was significantly increased in comparison with that of the Pb group (p < 0.001). We also found that liver malondialdehyde (MDA) level was increased significantly in the Pb group (p < 0.01), while glutathione (GSH) level (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.05), and catalase (CAT) (p < 0.01) activities were reduced when they were compared with control. Moreover, Pb administration increased expression of pro-apoptotic protein Bax, the ratio of Bax/Bcl-2, and decreased the expression of the antiapoptotic protein Bcl-2 (p < 0.01). Also, Pb was found to cause a significant decrease in sperm motility (p < 0.01) and sperm concentration (p < 0.05) but increase in sperm tails and total sperm anomalies (p < 0.05). These findings were partially preserved by the administration of beta-glucan. Taken together, these results indicated that beta-glucan has the potential to alleviate the Pb-induced toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14398-0DOI Listing
October 2021

Ellagic acid plays an important role in enhancing productive performance and alleviating oxidative stress, apoptosis in laying quail exposed to lead toxicity.

Ecotoxicol Environ Saf 2021 Jan 10;208:111608. Epub 2020 Nov 10.

Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey.

Lead (Pb) is one of the most toxic heavy metal environmental pollutants due to its widespread use of the industry and it is a harmful substance for human and animal health. This study was conducted to investigate the potential protective effects of ellagic acid (EA) on performance, egg quality, antioxidant parameters, and apoptotic pathway proteins in laying quails exposed to Pb toxicity. A total of 168 (15-week old) laying quails (Coturnix coturnix Japonica) were divided into 6 experimental groups (with similar initial average body weight). Birds were fed 1 of 6 diets for 8 weeks: 1 - Control (basal diet), 2 - Pb (basal diet + 100 mg/kg Pb), 3 - EA-300 (basal diet + 300 mg/kg EA), 4 - EA-500 (basal diet + 500 mg/kg EA), 5 - Pb + EA-300 (basal diet + 100 mg/kg Pb + 300 mg/kg EA), 6 - Pb + EA-500 (basal diet + 100 mg/kg Pb + 500 mg/kg EA). The results showed that adding 100 mg/kg of Pb to basal diet was adversely affected the performance parameters and, feed intake and egg production were significantly decreased by Pb supplementation (P < 0.01). However, the EA supplementation to Pb groups improved the performance parameters. Compared with the Pb alone group, in Pb + EA-500 group increased egg production by 8.4%. There were no significant differences in the Haugh unit, albumen index, and yolk index among groups (P > 0.05). Liver and kidney tissues of Pb group malondialdehyde (MDA) level increased (P < 0.001) and, GSH, GSH-Px, and CAT values decreased (P < 0.001) but, EA supplementation alleviated this condition (P < 0.001). The protein levels of caspase-3 and -9 were significantly increased in the Pb group compared to the control group, whereas EA supplementation alleviated the Pb-induced apoptosis by decreasing caspase-3 and -9 levels in the liver tissue (p < 0.001). In laying quails exposed to Pb toxicity, EA supplementation improves the performance parameters, enhances the antioxidant defense system, and suppresses apoptosis via regulates the expression of caspase-3 and -9. Thus, it was concluded that EA (especially 500 mg/kg) can ameliorate the toxic effects of Pb exposure in quails.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111608DOI Listing
January 2021

Turkish Propolis and Its Nano Form Can Ameliorate the Side Effects of Cisplatin, Which Is a Widely Used Drug in the Treatment of Cancer.

Plants (Basel) 2020 Aug 21;9(9). Epub 2020 Aug 21.

Department of ChemistryIstanbul University-Cerrahpasa, 34320 Istanbul, Turkey.

This study was performed to determine the effects of chitosan-coated nano-propolis (NP), which is synthesized via a green sonochemical method, and propolis on the side effects of cisplatin (CP), which is a widely used drug in the treatment of cancer. For this aim, 56 rats were divided into seven groups, balancing their body weights (BW). The study was designed as Control, CP (3 mg/kg BW at single dose of CP as intraperitoneal, ip), Propolis (100 mg/kg BW per day of propolis by gavage), NP-10 (10 mg/kg BW of NP per day by gavage), CP + Propolis (3 mg/kg BW of CP and 100 mg/kg BW of propolis), CP + NP-10 (3 mg/kg CP and 10 mg/kg BW of NP), and CP + NP-30 (3 mg/kg BW of CP and 30 mg/kg BW of NP). Propolis and NP (especially NP-30) were preserved via biochemical parameters, oxidative stress, and activation of apoptotic pathways (anti-apoptotic protein: Bcl-2 and pro-apoptotic protein: Bax) in liver and kidney tissues in the toxicity induced by CP. The NP were more effective than propolis at a dose of 30 mg/kg BW and had the potential to ameliorate CP's negative effects while overcoming serious side effects such as liver and kidney damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/plants9091075DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570054PMC
August 2020

The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats.

Int J Vitam Nutr Res 2021 Sep 30;91(5-6):427-438. Epub 2020 Apr 30.

Department of Biochemistry, Faculty of Medicine, University of Kafkas, Kars, Turkey.

The aim of this study was to investigate the possible protective effects of chrysin on oxidative status and histological alterations against carbon tetrachloride (CCl)-induced liver and kidney tissue in rats. The animals were randomly divided into four groups; the control, chrysin (100 mg/kg), CCl (0.5 ml/kg) and chrysin + CCl groups. Liver and kidney injuries were assessed by biochemical and histopathological examinations. The levels of malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) activity were measured in tissues. Serum tumor necrosis factor-α (TNF-α), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels were also measured in blood samples. MDA, serum TNF-α, AST, ALT, urea, and creatinine levels (p < 0.05) were significantly higher, and SOD activity and GSH level were significantly (p < 0.05) lower in the CCl group than in the control group. Treatment with chrysin in the chrysin + CCl group decreased MDA, AST, ALT, creatinine, and TNF-α levels (p < 0.05), and increased SOD activity, GSH levels (p < 0.05), and serum TNF-α levels (p < 0.05). In addition, body weight change (BWC) (p < 0.05) and feed intake (FI) were significantly lower (p < 0.001) in the CCl group than in the control group. Moreover, treatment with chrysin increased BWC and FI in the chrysin + CCl group compared with that in the CCl group. These findings also confirmed by histopathological examination. The chrysin treatment ameliorated the CCl-induced biochemical and pathological alterations. These results demonstrated that chrysin provided amelioration on the rat liver and kidney tissues CCl-induced injury by increasing the antioxidant activity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1024/0300-9831/a000653DOI Listing
September 2021
-->