Publications by authors named "Sebastien Moutton"

56 Publications

DLG4-related synaptopathy: a new rare brain disorder.

Authors:
Agustí Rodríguez-Palmero Melissa Maria Boerrigter David Gómez-Andrés Kimberly A Aldinger Íñigo Marcos-Alcalde Bernt Popp David B Everman Alysia Kern Lovgren Stephanie Arpin Vahid Bahrambeigi Gea Beunders Anne-Marie Bisgaard V A Bjerregaard Ange-Line Bruel Thomas D Challman Benjamin Cogné Christine Coubes Stella A de Man Anne-Sophie Denommé-Pichon Thomas J Dye Frances Elmslie Lars Feuk Sixto García-Miñaúr Tracy Gertler Elisa Giorgio Nicolas Gruchy Tobias B Haack Chad R Haldeman-Englert Bjørn Ivar Haukanes Juliane Hoyer Anna C E Hurst Bertrand Isidor Maria Johansson Soller Sulagna Kushary Malin Kvarnung Yuval E Landau Kathleen A Leppig Anna Lindstrand Lotte Kleinendorst Alex MacKenzie Giorgia Mandrile Bryce A Mendelsohn Setareh Moghadasi Jenny E Morton Sebastien Moutton Amelie J Müller Melanie O'Leary Marta Pacio-Míguez Maria Palomares-Bralo Sumit Parikh Rolph Pfundt Ben Pode-Shakked Anita Rauch Elena Repnikova Anya Revah-Politi Meredith J Ross Claudia A L Ruivenkamp Elisabeth Sarrazin Juliann M Savatt Agatha Schlüter Bitten Schönewolf-Greulich Zohra Shad Charles Shaw-Smith Joseph T Shieh Motti Shohat Stephanie Spranger Heidi Thiese Frederic Tran Mau-Them Bregje van Bon Ineke van de Burgt Ingrid M B H van de Laar Esmée van Drie Mieke M van Haelst Conny M van Ravenswaaij-Arts Edgard Verdura Antonio Vitobello Stephan Waldmüller Sharon Whiting Christiane Zweier Carlos E Prada Bert B A de Vries William B Dobyns Simone F Reiter Paulino Gómez-Puertas Aurora Pujol Zeynep Tümer

Genet Med 2021 Feb 17. Epub 2021 Feb 17.

Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.

Purpose: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.

Methods: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.

Results: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.

Conclusion: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-01075-9DOI Listing
February 2021

Neuropsychological study in 19 French patients with White-Sutton syndrome and POGZ mutations.

Clin Genet 2021 Mar 15;99(3):407-417. Epub 2020 Dec 15.

Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Hôpital d'Enfants, CHU Dijon, Dijon, France.

White-Sutton syndrome is a rare developmental disorder characterized by global developmental delay, intellectual disabilities (ID), and neurobehavioral abnormalities secondary to pathogenic pogo transposable element-derived protein with zinc finger domain (POGZ) variants. The purpose of our study was to describe the neurocognitive phenotype of an unbiased national cohort of patients with identified POGZ pathogenic variants. This study is based on a French collaboration through the AnDDI-Rares network, and includes 19 patients from 18 families with POGZ pathogenic variants. All clinical data and neuropsychological tests were collected from medical files. Among the 19 patients, 14 patients exhibited ID (six mild, five moderate and three severe). The five remaining patients had learning disabilities and shared a similar neurocognitive profile, including language difficulties, dysexecutive syndrome, attention disorders, slowness, and social difficulties. One patient evaluated for autism was found to have moderate autism spectrum disorder. This study reveals that the cognitive phenotype of patients with POGZ pathogenic variants can range from learning disabilities to severe ID. It highlights that pathogenic variations in the same genes can be reported in a large spectrum of neurocognitive profiles, and that children with learning disabilities could benefit from next generation sequencing techniques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13894DOI Listing
March 2021

NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns.

Genet Med 2021 Feb 4;23(2):363-373. Epub 2020 Nov 4.

Epilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.

Purpose: Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy.

Methods: Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy.

Results: Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism.

Conclusion: NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-00988-9DOI Listing
February 2021

Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy.

Hum Mutat 2020 Dec 10;41(12):2167-2178. Epub 2020 Nov 10.

Centre de Diagnostic Prénatal, Hôpital MFME, Fort de France, Martinique, France.

Herein, we report the screening of a large panel of genes in a series of 80 fetuses with congenital heart defects (CHDs) and/or heterotaxy and no cytogenetic anomalies. There were 49 males (61%/39%), with a family history in 28 cases (35%) and no parental consanguinity in 77 cases (96%). All fetuses had complex CHD except one who had heterotaxy and midline anomalies while 52 cases (65%) had heterotaxy in addition to CHD. Altogether, 29 cases (36%) had extracardiac and extra-heterotaxy anomalies. A pathogenic variant was found in 10/80 (12.5%) cases with a higher percentage in the heterotaxy group (8/52 cases, 15%) compared with the non-heterotaxy group (2/28 cases, 7%), and in 3 cases with extracardiac and extra-heterotaxy anomalies (3/29, 10%). The inheritance was recessive in six genes (DNAI1, GDF1, MMP21, MYH6, NEK8, and ZIC3) and dominant in two genes (SHH and TAB2). A homozygous pathogenic variant was found in three cases including only one case with known consanguinity. In conclusion, after removing fetuses with cytogenetic anomalies, next-generation sequencing discovered a causal variant in 12.5% of fetal cases with CHD and/or heterotaxy. Genetic counseling for future pregnancies was greatly improved. Surprisingly, unexpected consanguinity accounts for 20% of cases with identified pathogenic variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24132DOI Listing
December 2020

The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction.

Genet Med 2021 Feb 27;23(2):352-362. Epub 2020 Oct 27.

Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium.

Purpose: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit.

Methods: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits.

Results: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly.

Conclusion: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-00981-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862067PMC
February 2021

Endocrine and Growth Abnormalities in 4H Leukodystrophy Caused by Variants in POLR3A, POLR3B, and POLR1C.

Authors:
Félixe Pelletier Stefanie Perrier Ferdy K Cayami Amytice Mirchi Stephan Saikali Luan T Tran Nicole Ulrick Kether Guerrero Emmanouil Rampakakis Rosalina M L van Spaendonk Sakkubai Naidu Daniela Pohl William T Gibson Michelle Demos Cyril Goizet Ingrid Tejera-Martin Ana Potic Brent L Fogel Bernard Brais Michel Sylvain Guillaume Sébire Charles Marques Lourenço Joshua L Bonkowsky Coriene Catsman-Berrevoets Pedro S Pinto Sandya Tirupathi Petter Strømme Ton de Grauw Dorota Gieruszczak-Bialek Ingeborg Krägeloh-Mann Hanna Mierzewska Heike Philippi Julia Rankin Tahir Atik Brenda Banwell William S Benko Astrid Blaschek Annette Bley Eugen Boltshauser Drago Bratkovic Klara Brozova Icíar Cimas Christopher Clough Bernard Corenblum Argirios Dinopoulos Gail Dolan Flavio Faletra Raymond Fernandez Janice Fletcher Maria Eugenia Garcia Garcia Paolo Gasparini Janina Gburek-Augustat Dolores Gonzalez Moron Aline Hamati Inga Harting Christoph Hertzberg Alan Hill Grace M Hobson A Micheil Innes Marcelo Kauffman Susan M Kirwin Gerhard Kluger Petra Kolditz Urania Kotzaeridou Roberta La Piana Eriskay Liston William McClintock Meriel McEntagart Fiona McKenzie Serge Melançon Anjum Misbahuddin Mohnish Suri Fernando I Monton Sebastien Moutton Raymond P J Murphy Miriam Nickel Hüseyin Onay Simona Orcesi Ferda Özkınay Steffi Patzer Helio Pedro Sandra Pekic Mercedes Pineda Marfa Amy Pizzino Barbara Plecko Bwee Tien Poll-The Vera Popovic Dietz Rating Marie-France Rioux Norberto Rodriguez Espinosa Anne Ronan John R Ostergaard Elsa Rossignol Rocio Sanchez-Carpintero Anna Schossig Nesrin Senbil Laura K Sønderberg Roos Cathy A Stevens Matthis Synofzik László Sztriha Daniel Tibussek Dagmar Timmann Davide Tonduti Bart P van de Warrenburg Maria Vázquez-López Sunita Venkateswaran Pontus Wasling Evangeline Wassmer Richard I Webster Gert Wiegand Grace Yoon Joost Rotteveel Raphael Schiffmann Marjo S van der Knaap Adeline Vanderver Gabriel Á Martos-Moreno Constantin Polychronakos Nicole I Wolf Geneviève Bernard

J Clin Endocrinol Metab 2021 Jan;106(2):e660-e674

Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.

Context: 4H or POLR3-related leukodystrophy is an autosomal recessive disorder typically characterized by hypomyelination, hypodontia, and hypogonadotropic hypogonadism, caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C, and POLR3K. The endocrine and growth abnormalities associated with this disorder have not been thoroughly investigated to date.

Objective: To systematically characterize endocrine abnormalities of patients with 4H leukodystrophy.

Design: An international cross-sectional study was performed on 150 patients with genetically confirmed 4H leukodystrophy between 2015 and 2016. Endocrine and growth abnormalities were evaluated, and neurological and other non-neurological features were reviewed. Potential genotype/phenotype associations were also investigated.

Setting: This was a multicenter retrospective study using information collected from 3 predominant centers.

Patients: A total of 150 patients with 4H leukodystrophy and pathogenic variants in POLR3A, POLR3B, or POLR1C were included.

Main Outcome Measures: Variables used to evaluate endocrine and growth abnormalities included pubertal history, hormone levels (estradiol, testosterone, stimulated LH and FSH, stimulated GH, IGF-I, prolactin, ACTH, cortisol, TSH, and T4), and height and head circumference charts.

Results: The most common endocrine abnormalities were delayed puberty (57/74; 77% overall, 64% in males, 89% in females) and short stature (57/93; 61%), when evaluated according to physician assessment. Abnormal thyroid function was reported in 22% (13/59) of patients.

Conclusions: Our results confirm pubertal abnormalities and short stature are the most common endocrine features seen in 4H leukodystrophy. However, we noted that endocrine abnormalities are typically underinvestigated in this patient population. A prospective study is required to formulate evidence-based recommendations for management of the endocrine manifestations of this disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/clinem/dgaa700DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823228PMC
January 2021

Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype correlations.

J Med Genet 2020 Jul 30. Epub 2020 Jul 30.

UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD « Génétique des Anomalies du Développement », FHU-TRANSLAD, Dijon, France

Purpose: Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses.

Methods: We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants.

Results: sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%).

Conclusions: This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-106867DOI Listing
July 2020

De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome.

Genet Med 2020 Nov 22;22(11):1838-1850. Epub 2020 Jul 22.

Department of Translational Medicine, Federico II University, Naples, Italy.

Purpose: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown.

Methods: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes.

Results: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification.

Conclusion: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0898-yDOI Listing
November 2020

Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation.

Genet Med 2020 Nov 22;22(11):1887-1891. Epub 2020 Jun 22.

UF de Génétique Médicale et CRMR « Déficience intellectuelle », Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France.

Purpose: Abnormality of the corpus callosum (AbnCC) is etiologically a heterogeneous condition and the prognosis in prenatally diagnosed cases is difficult to predict. The purpose of our research was to establish the diagnostic yield using chromosomal microarray (CMA) and exome sequencing (ES) in cases with prenatally diagnosed isolated (iAbnCC) and nonisolated AbnCC (niAbnCC).

Methods: CMA and prenatal trio ES (pES) were done on 65 fetuses with iAbnCC and niAbnCC. Only pathogenic gene variants known to be associated with AbnCC and/or intellectual disability were considered.

Results: pES results were available within a median of 21.5 days (9-53 days). A pathogenic single-nucleotide variant (SNV) was identified in 12 cases (18%) and a pathogenic CNV was identified in 3 cases (4.5%). Thus, the genetic etiology was determined in 23% of cases. In all diagnosed cases, the results provided sufficient information regarding the neurodevelopmental prognosis and helped the parents to make an informed decision regarding the outcome of the pregnancy.

Conclusion: Our results show the significant diagnostic and prognostic contribution of CMA and pES in cases with prenatally diagnosed AbnCC. Further prospective cohort studies with long-term follow-up of the born children will be needed to provide accurate prenatal counseling after a negative pES result.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0872-8DOI Listing
November 2020

De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay.

Am J Hum Genet 2020 07 17;107(1):164-172. Epub 2020 Jun 17.

Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands.

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.05.017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332645PMC
July 2020

Clinical and Molecular Spectrum of Nonsyndromic Early-Onset Osteoarthritis.

Arthritis Rheumatol 2020 10 25;72(10):1689-1693. Epub 2020 Aug 25.

Université de Montpellier, Centre Hospitalier Universitaire Montpellier, CLAD Sud Languedoc-Roussillon, Montpellier, France.

Objective: Osteoarthritis (OA) is the most common joint disease worldwide. The etiology of OA is varied, ranging from multifactorial to environmental to monogenic. In a condition called early-onset OA, OA occurs at an earlier age than is typical in the general population. To our knowledge, there have been no large-scale genetic studies of individuals with early-onset OA. The present study was undertaken to investigate causes of monogenic OA in individuals with nonsyndromic early-onset OA.

Methods: The study probands were 45 patients with nonsyndromic early-onset OA who were referred to our skeletal disease center by skeletal dysplasia experts between 2013 and 2019. Criteria for early-onset OA included radiographic evidence, body mass index ≤30 kg/m , age at onset ≤50 years, and involvement of ≥1 joint site. Molecular analysis was performed with a next-generation sequencing panel.

Results: We identified a genetic variant in 13 probands (29%); the affected gene was COL2A1 in 11, ACAN in 1, and SLC26A2 in 1. After familial segregation analysis, 20 additional individuals were identified. The mean ± SD age at onset of joint pain was 19.5 ± 3.9 years (95% confidence interval 3-47). Eighteen of 33 subjects (55%) with nonsyndromic early-onset OA and a genetic variant had had at least 1 joint replacement (mean ± SD age at first joint replacement 41 ± 4.2 years; mean number of joint replacements 2.6 per individual), and 21 (45%) of the joint replacement surgeries were performed when the patient was <45 years old. Of the 20 patients age >40 years, 17 (85%) had had at least 1 joint replacement.

Conclusion: We confirmed that COL2A1 is the main monogenic cause of nonsyndromic early-onset OA. However, on the basis of genetic heterogeneity of early-onset OA, we recommend next-generation sequencing for all individuals who undergo joint replacement prior to the age of 45 years. Lifestyle recommendations for prevention should be implemented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/art.41387DOI Listing
October 2020

Second-tier trio exome sequencing after negative solo clinical exome sequencing: an efficient strategy to increase diagnostic yield and decipher molecular bases in undiagnosed developmental disorders.

Hum Genet 2020 Nov 12;139(11):1381-1390. Epub 2020 May 12.

UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD, FHU-TRANSLAD, Bâtiment B3, 15 avenue du maréchal Delattre de Tassigny, 21000, Dijon, France.

Developmental disorders (DD), characterized by malformations/dysmorphism and/or intellectual disability, affecting around 3% of worldwide population, are mostly linked to genetic anomalies. Despite clinical exome sequencing (cES) centered on genes involved in human genetic disorders, the majority of patients affected by DD remain undiagnosed after solo-cES. Trio-based strategy is expected to facilitate variant selection thanks to rapid parental segregation. We performed a second step trio-ES (not only focusing on genes involved in human disorders) analysis in 70 patients with negative results after solo-cES. All candidate variants were shared with a MatchMaking exchange system to identify additional patients carrying variants in the same genes and with similar phenotype. In 18/70 patients (26%), we confirmed causal implication of nine OMIM-morbid genes and identified nine new strong candidate genes (eight de novo and one compound heterozygous variants). These nine new candidate genes were validated through the identification of patients with similar phenotype and genotype thanks to data sharing. Moreover, 11 genes harbored variants of unknown significance in 10/70 patients (14%). In DD, a second step trio-based ES analysis appears an efficient strategy in diagnostic and translational research to identify highly candidate genes and improve diagnostic yield.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-020-02178-8DOI Listing
November 2020

Next-generation sequencing approaches and challenges in the diagnosis of developmental anomalies and intellectual disability.

Clin Genet 2020 Nov 31;98(5):433-444. Epub 2020 May 31.

Inserm UMR1231 GAD, Université Bourgogne-Franche Comté, Dijon, France.

Recent advances in next-generation sequencing (NGS) technologies have revolutionized the field of human genetics. Alongside a broad panel of bioinformatics tools and databases, NGS technologies have unprecedentedly improved the molecular diagnosis rate and the identification of new genes associated with rare disorders. However, about 50% of patients remain without a final diagnosis. Here, we highlight the utility of NGS applications in developmental anomalies and intellectual disability, illustrating their main advantages and pitfalls. Through specific examples, we suggest novel strategies and tools for identifying the molecular bases in the remaining patients, and we outline future challenges.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13764DOI Listing
November 2020

Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability.

J Med Genet 2020 07 10;57(7):466-474. Epub 2020 Apr 10.

INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France

Purpose: Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects.

Methods: To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic.

Results: We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals ( and ). Using simulation models, we showed that five genes ( and ) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including and , which are known to be mutated in overgrowth syndromes.

Conclusion: We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10) and genes regulated by the fragile X mental retardation protein (p=3×10), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2019-106425DOI Listing
July 2020

Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with Hypotonia, Cerebellar Atrophy, and Epilepsy.

Am J Hum Genet 2020 04 26;106(4):484-495. Epub 2020 Mar 26.

CHU-Sainte Justine Research Center, University of Montreal, Montreal, QC, Canada, H3T1C5; Department of Pediatrics, University of Montreal, Montreal, QC, Canada, H3T1C5. Electronic address:

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.03.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118585PMC
April 2020

De Novo Frameshift Variants in the Neuronal Splicing Factor NOVA2 Result in a Common C-Terminal Extension and Cause a Severe Form of Neurodevelopmental Disorder.

Am J Hum Genet 2020 04 19;106(4):438-452. Epub 2020 Mar 19.

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; Laboratory of Genetic Diagnostic, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France. Electronic address:

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.02.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118572PMC
April 2020

Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders.

Am J Hum Genet 2020 03 27;106(3):338-355. Epub 2020 Feb 27.

Wessex Clinical Genetics, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 5YA, UK; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK. Electronic address:

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.01.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058823PMC
March 2020

Growth charts in Kabuki syndrome 1.

Am J Med Genet A 2020 03 26;182(3):446-453. Epub 2019 Dec 26.

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Univer Montpellier, CHU de Montpellier, CLAD ASOOR Montpellier, France.

Kabuki syndrome (KS, KS1: OMIM 147920 and KS2: OMIM 300867) is caused by pathogenic variations in KMT2D or KDM6A. KS is characterized by multiple congenital anomalies and neurodevelopmental disorders. Growth restriction is frequently reported. Here we aimed to create specific growth charts for individuals with KS1, identify parameters used for size prognosis and investigate the impact of growth hormone therapy on adult height. Growth parameters and parental size were obtained for 95 KS1 individuals (41 females). Growth charts for height, weight, body mass index (BMI) and occipitofrontal circumference were generated in standard deviation values for the first time in KS1. Statural growth of KS1 individuals was compared to parental target size. According to the charts, height, weight, BMI, and occipitofrontal circumference were lower for KS1 individuals than the normative French population. For males and females, the mean growth of KS1 individuals was -2 and -1.8 SD of their parental target size, respectively. Growth hormone therapy did not increase size beyond the predicted size. This study, from the largest cohort available, proposes growth charts for widespread use in the management of KS1, especially for size prognosis and screening of other diseases responsible for growth impairment beyond a calculated specific target size.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61462DOI Listing
March 2020

Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity.

Hum Mutat 2019 Oct 23. Epub 2019 Oct 23.

Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA.

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23936DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187541PMC
October 2019

Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency.

Genet Med 2020 03 3;22(3):524-537. Epub 2019 Oct 3.

INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.

Purpose: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.

Methods: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated.

Results: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated.

Conclusions: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0657-0DOI Listing
March 2020

Multiplex targeted high-throughput sequencing in a series of 352 patients with congenital limb malformations.

Hum Mutat 2020 01 23;41(1):222-239. Epub 2019 Sep 23.

Service de Biochimie et Biologie Moléculaire, CHU Lille, Lille, France.

Congenital limb malformations (CLM) comprise many conditions affecting limbs and more than 150 associated genes have been reported. Due to this large heterogeneity, a high proportion of patients remains without a molecular diagnosis. In the last two decades, advances in high throughput sequencing have allowed new methodological strategies in clinical practice. Herein, we report the screening of 52 genes/regulatory sequences by multiplex high-throughput targeted sequencing, in a series of 352 patients affected with various CLM, over a 3-year period of time. Patients underwent a clinical triage by expert geneticists in CLM. A definitive diagnosis was achieved in 35.2% of patients, the yield varying considerably, depending on the phenotype. We identified 112 single nucleotide variants and 26 copy-number variations, of which 52 are novel pathogenic or likely pathogenic variants. In 6% of patients, variants of uncertain significance have been found in good candidate genes. We showed that multiplex targeted high-throughput sequencing works as an efficient and cost-effective tool in clinical practice for molecular diagnosis of congenital limb malformations. Careful clinical evaluation of patients may maximize the yield of CLM panel testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23912DOI Listing
January 2020

A novel homozygous KCNQ3 loss-of-function variant causes non-syndromic intellectual disability and neonatal-onset pharmacodependent epilepsy.

Epilepsia Open 2019 Sep 11;4(3):464-475. Epub 2019 Aug 11.

Division of Pharmacology, Department of Neuroscience University of Naples "Federico II" Naples Italy.

Objective: Heterozygous variants in or, more rarely, genes are responsible for early-onset developmental/epileptic disorders characterized by heterogeneous clinical presentation and course, genetic transmission, and prognosis. While familial forms mostly include benign epilepsies with seizures starting in the neonatal or early-infantile period, de novo variants in or have been described in sporadic cases of early-onset encephalopathy (EOEE) with pharmacoresistant seizures, various age-related pathological EEG patterns, and moderate/severe developmental impairment. All pathogenic variants in or occur in heterozygosity. The aim of this work was to report the clinical, molecular, and functional properties of a new variant found in homozygous configuration in a 9-year-old girl with pharmacodependent neonatal-onset epilepsy and non-syndromic intellectual disability.

Methods: Exome sequencing was used for genetic investigation. KCNQ3 transcript and subunit expression in fibroblasts was analyzed with quantitative real-time PCR and Western blotting or immunofluorescence, respectively. Whole-cell patch-clamp electrophysiology was used for functional characterization of mutant subunits.

Results: A novel single-base duplication in exon 12 of (NM_004519.3:c.1599dup) was found in homozygous configuration in the proband born to consanguineous healthy parents; this frameshift variant introduced a premature termination codon (PTC), thus deleting a large part of the C-terminal region. Mutant KCNQ3 transcript and protein abundance was markedly reduced in primary fibroblasts from the proband, consistent with nonsense-mediated mRNA decay. The variant fully abolished the ability of KCNQ3 subunits to assemble into functional homomeric or heteromeric channels with KCNQ2 subunits.

Significance: The present results indicate that a homozygous loss-of-function variant is responsible for a severe phenotype characterized by neonatal-onset pharmacodependent seizures, with developmental delay and intellectual disability. They also reveal difference in genetic and pathogenetic mechanisms between - and -related epilepsies, a crucial observation for patients affected with EOEE and/or developmental disabilities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/epi4.12353DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698674PMC
September 2019

Hearing impairment as an early sign of alpha-mannosidosis in children with a mild phenotype: Report of seven new cases.

Am J Med Genet A 2019 09 26;179(9):1756-1763. Epub 2019 Jun 26.

Centre de Génétique et Centre de Référence Maladies Rares 'Anomalies du Développement' de l'Interrégion Est, Hôpital d'Enfants, CHU, Dijon, France.

Alpha-mannosidosis (AM) is a very rare (prevalence: 1/500000 births) autosomal recessive lysosomal storage disorder. It is characterized by multi-systemic involvement associated with progressive intellectual disability, hearing loss, skeletal anomalies, and coarse facial features. The spectrum is wide, from very severe and lethal to a milder phenotype that usually progresses slowly. AM is caused by a deficiency of lysosomal alpha-mannosidase. A diagnosis can be established by measuring the activity of lysosomal alpha-mannosidase in leucocytes and screening for abnormal urinary excretion of mannose-rich oligosaccharides. Genetic confirmation is obtained with the identification of MAN2B1 mutations. Enzyme replacement therapy (LAMZEDE ) was approved for use in Europe in August 2018. Here, we describe seven individuals from four families, diagnosed at 3-23 years of age, and who were referred to a clinical geneticist for etiologic exploration of syndromic hearing loss, associated with moderate learning disabilities. Exome sequencing had been used to establish the molecular diagnosis in five cases, including a two-sibling pair. In the remaining two patients, the diagnosis was obtained with screening of urinary oligosaccharides excretion and the association of deafness and hypotonia. These observations emphasize that the clinical diagnosis of AM can be challenging, and that it is likely an underdiagnosed rare cause of syndromic hearing loss. Exome sequencing can contribute significantly to the early diagnosis of these nonspecific mild phenotypes, with advantages for treatment and management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61273DOI Listing
September 2019

Increased diagnostic and new genes identification outcome using research reanalysis of singleton exome sequencing.

Eur J Hum Genet 2019 10 23;27(10):1519-1531. Epub 2019 Jun 23.

Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France.

In clinical exome sequencing (cES), the American College of Medical Genetics and Genomics recommends limiting variant interpretation to established human-disease genes. The diagnostic yield of cES in intellectual disability and/or multiple congenital anomalies (ID/MCA) is currently about 30%. Though the results may seem acceptable for rare diseases, they mean that 70% of affected individuals remain genetically undiagnosed. Further analysis extended to all mutated genes in a research environment is a valuable strategy for improving diagnostic yields. This study presents the results of systematic research reanalysis of negative cES in a cohort of 313 individuals with ID/MCA. We identified 17 new genes not related to human disease, implicated 22 non-OMIM disease-causing genes recently or previously rarely related to disease, and described 1 new phenotype associated with a known gene. Twenty-six candidate genes were identified and are waiting for future recurrence. Overall, we diagnose 15% of the individuals with initial negative cES, increasing the diagnostic yield from 30% to more than 40% (or 46% if strong candidate genes are considered). This study demonstrates the power of such extended research reanalysis to increase scientific knowledge of rare diseases. These novel findings can then be applied in the field of diagnostics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-019-0442-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777617PMC
October 2019

Autism and developmental disability caused by KCNQ3 gain-of-function variants.

Ann Neurol 2019 08 26;86(2):181-192. Epub 2019 Jun 26.

Department of Neurology, University of California, San Francisco, San Francisco, CA.

Objective: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms.

Methods: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording.

Results: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects.

Interpretation: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.25522DOI Listing
August 2019

De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes.

Hum Mol Genet 2019 09;28(17):2937-2951

Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.

KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the BK current, whereas p.(Cys413Tyr) and p.(Pro805Leu) reduced the BK current amplitude and shifted the activation curves toward positive potentials. The p.(Asp984Asn) variant reduced the current amplitude without affecting kinetics. A phenotypic analysis of the patients carrying the recurrent p.(Gly375Arg) de novo missense LoF variant revealed a novel syndromic neurodevelopmental disorder associated with severe developmental delay, visceral and cardiac malformations, connective tissue presentations with arterial involvement, bone dysplasia and characteristic dysmorphic features. Patients with other LoF variants presented with neurological and developmental symptoms including developmental delay, intellectual disability, ataxia, axial hypotonia, cerebral atrophy and speech delay/apraxia/dysarthria. Therefore, LoF KCNMA1 variants are associated with a new syndrome characterized by a broad spectrum of neurological phenotypes and developmental disorders. LoF variants of KCNMA1 cause a new syndrome distinctly different from gain-of-function variants in the same gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6735855PMC
September 2019

Phenotypic and biochemical analysis of an international cohort of individuals with variants in NAA10 and NAA15.

Hum Mol Genet 2019 09;28(17):2900-2919

Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.

N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736318PMC
September 2019

HNRNPR Variants that Impair Homeobox Gene Expression Drive Developmental Disorders in Humans.

Am J Hum Genet 2019 06 9;104(6):1040-1059. Epub 2019 May 9.

Amsterdam University Medical Centers, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands. Electronic address:

The heterogeneous nuclear ribonucleoprotein (HNRNP) genes code for a set of RNA-binding proteins that function primarily in the spliceosome C complex. Pathogenic variants in these genes can drive neurodegeneration, through a mechanism involving excessive stress-granule formation, or developmental defects, through mechanisms that are not known. Here, we report four unrelated individuals who have truncating or missense variants in the same C-terminal region of hnRNPR and who have multisystem developmental defects including abnormalities of the brain and skeleton, dysmorphic facies, brachydactyly, seizures, and hypoplastic external genitalia. We further identified in the literature a fifth individual with a truncating variant. RNA sequencing of primary fibroblasts reveals that these HNRNPR variants drive significant changes in the expression of several homeobox genes, as well as other transcription factors, such as LHX9, TBX1, and multiple HOX genes, that are considered fundamental regulators of embryonic and gonad development. Higher levels of retained intronic HOX sequences and lost splicing events in the HOX cluster are observed in cells carrying HNRNPR variants, suggesting that impaired splicing is at least partially driving HOX deregulation. At basal levels, stress-granule formation appears normal in primary and transfected cells expressing HNRNPR variants. However, these cells reveal profound recovery defects, where stress granules fail to disassemble properly, after exposure to oxidative stress. This study establishes an essential role for HNRNPR in human development and points to a mechanism that may unify other "spliceosomopathies" linked to variants that drive multi-system congenital defects and are found in hnRNPs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2019.03.024DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556882PMC
June 2019

Variant recurrence in neurodevelopmental disorders: the use of publicly available genomic data identifies clinically relevant pathogenic missense variants.

Genet Med 2019 11 30;21(11):2504-2511. Epub 2019 Apr 30.

Inserm UMR 1231 GAD, Genetics of Developmental disorders, Université de Bourgogne-Franche Comté, FHU TRANSLAD, Dijon, France.

Purpose: Next-generation sequencing has revealed the major impact of de novo variants (DNVs) in developmental disorders (DD) such as intellectual disability, autism, and epilepsy. However, a substantial fraction of these predicted pathogenic DNVs remains challenging to distinguish from background DNVs, notably the missense variants acting via nonhaploinsufficient mechanisms on specific amino acid residues. We hypothesized that the detection of the same missense variation in at least two unrelated individuals presenting with a similar phenotype could be a powerful approach to reveal novel pathogenic variants.

Methods: We looked for variations independently present in both our database of >1200 solo exomes and in denovo-db, a large, publicly available collection of de novo variants identified in patients with DD.

Results: This approach identified 30 variants with strong evidence of pathogenicity, including variants already classified as pathogenic or probably pathogenic by our team, and also several new variants of interest in known OMIM genes or in novel genes. We identified FEM1B and GNAI2 as good candidate genes for syndromic intellectual disability and confirmed the implication of ACTL6B in a neurodevelopmental disorder.

Conclusion: Annotation of local variants with denovo-db can highlight missense variants with high potential for pathogenicity, both facilitating the time-consuming reanalysis process and allowing novel DD gene discoveries.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0518-xDOI Listing
November 2019