Publications by authors named "Sebastian Igelmann"

8 Publications

  • Page 1 of 1

A hydride transfer complex reprograms NAD metabolism and bypasses senescence.

Mol Cell 2021 Sep;81(18):3848-3865.e19

CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada. Electronic address:

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2021.08.028DOI Listing
September 2021

STAT3 and STAT5 Activation in Solid Cancers.

Cancers (Basel) 2019 Sep 25;11(10). Epub 2019 Sep 25.

Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.

The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers11101428DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826753PMC
September 2019

Ribosomal protein RPL22/eL22 regulates the cell cycle by acting as an inhibitor of the CDK4-cyclin D complex.

Cell Cycle 2019 Mar - Apr;18(6-7):759-770. Epub 2019 Mar 28.

a Department of Biochemistry and Molecular Medicine , Université de Montréal , Montréal , Québec , Canada.

Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15384101.2019.1593708DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6464582PMC
April 2020

Circumventing senescence is associated with stem cell properties and metformin sensitivity.

Aging Cell 2019 04 6;18(2):e12889. Epub 2019 Jan 6.

Department of Biochemistry and Molecular Medicine and CR-CHUM, Université de Montréal, Montréal, Québec, Canada.

Most cancers arise in old individuals, which also accumulate senescent cells. Cellular senescence can be experimentally induced by expression of oncogenes or telomere shortening during serial passage in culture. In vivo, precursor lesions of several cancer types accumulate senescent cells, which are thought to represent a barrier to malignant progression and a response to the aberrant activation of growth signaling pathways by oncogenes (oncogene toxicity). Here, we sought to define gene expression changes associated with cells that bypass senescence induced by oncogenic RAS. In the context of pancreatic ductal adenocarcinoma (PDAC), oncogenic KRAS induces benign pancreatic intraepithelial neoplasias (PanINs), which exhibit features of oncogene-induced senescence. We found that the bypass of senescence in PanINs leads to malignant PDAC cells characterized by gene signatures of epithelial-mesenchymal transition, stem cells, and mitochondria. Stem cell properties were similarly acquired in PanIN cells treated with LPS, and in primary fibroblasts and mammary epithelial cells that bypassed Ras-induced senescence after reduction of ERK signaling. Intriguingly, maintenance of cells that circumvented senescence and acquired stem cell properties was blocked by metformin, an inhibitor of complex I of the electron transport chain or depletion of STAT3, a protein required for mitochondrial functions and stemness. Thus, our studies link bypass of senescence in premalignant lesions to loss of differentiation, acquisition of stemness features, and increased reliance on mitochondrial functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.12889DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413657PMC
April 2019

Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway.

Nat Cell Biol 2018 07 25;20(7):789-799. Epub 2018 Jun 25.

Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.

Cellular senescence is a tumour suppressor programme characterized by a stable cell cycle arrest. Here we report that cellular senescence triggered by a variety of stimuli leads to diminished ribosome biogenesis and the accumulation of both rRNA precursors and ribosomal proteins. These defects were associated with reduced expression of several ribosome biogenesis factors, the knockdown of which was also sufficient to induce senescence. Genetic analysis revealed that Rb but not p53 was required for the senescence response to altered ribosome biogenesis. Mechanistically, the ribosomal protein S14 (RPS14 or uS11) accumulates in the soluble non-ribosomal fraction of senescent cells, where it binds and inhibits CDK4 (cyclin-dependent kinase 4). Overexpression of RPS14 is sufficient to inhibit Rb phosphorylation, inducing cell cycle arrest and senescence. Here we describe a mechanism for maintaining the senescent cell cycle arrest that may be relevant for cancer therapy, as well as biomarkers to identify senescent cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41556-018-0127-yDOI Listing
July 2018

Senescence gives insights into the morphogenetic evolution of anamniotes.

Biol Open 2017 Jun 15;6(6):891-896. Epub 2017 Jun 15.

Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada

Senescence represents a mechanism to avoid undesired cell proliferation that plays a role in tumor suppression, wound healing and embryonic development. In order to gain insight on the evolution of senescence, we looked at its presence in developing axolotls (urodele amphibians) and in zebrafish (teleost fish), which are both anamniotes. Our data indicate that cellular senescence is present in various developing structures in axolotls (pronephros, olfactory epithelium of nerve fascicles, lateral organs, gums) and in zebrafish (epithelium of the yolk sac and in the lower part of the gut). Senescence was particularly associated with transient structures (pronephros in axolotls and yolk sac in zebrafish) suggesting that it may play a role in the elimination of these tissues. Our data supports the notion that cellular senescence evolved early in vertebrate evolution to influence embryonic development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/bio.025809DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483031PMC
June 2017

Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation.

Genes Dev 2013 Apr 18;27(8):900-15. Epub 2013 Apr 18.

Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.

Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the activation of the senescence mechanism, allowing oncogenic ras to transform primary cells. Mechanistically, ERK-mediated senescence involved the proteasome-dependent degradation of proteins required for cell cycle progression, mitochondrial functions, cell migration, RNA metabolism, and cell signaling. This senescence-associated protein degradation (SAPD) was observed not only in cells expressing ectopic ras, but also in cells that senesced due to short telomeres. Individual RNAi-mediated inactivation of SAPD targets was sufficient to restore senescence in cells transformed by oncogenic ras or trigger senescence in normal cells. Conversely, the anti-senescence viral oncoproteins E1A, E6, and E7 prevented SAPD. In human prostate neoplasms, high levels of phosphorylated ERK were found in benign lesions, correlating with other senescence markers and low levels of STAT3, one of the SAPD targets. We thus identified a mechanism that links aberrant activation of growth signaling pathways and short telomeres to protein degradation and cellular senescence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gad.203984.112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650227PMC
April 2013

Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation.

Aging Cell 2013 Jun 23;12(3):489-98. Epub 2013 Apr 23.

Département de Biochimie, Université de Montréal, Pavillon Roger-Gaudry 2900 boul. Édouard Montpetit, Montréal, QC, H3C 3J7, Canada.

We show that the antidiabetic drug metformin inhibits the expression of genes coding for multiple inflammatory cytokines seen during cellular senescence. Conditioned medium (CM) from senescent cells stimulates the growth of prostate cancer cells but treatment of senescent cells with metformin inhibited this effect. Bioinformatic analysis of genes downregulated by metformin suggests that the drug blocks the activity of the transcription factor NF-κB. In agreement, metformin prevented the translocation of NF-κB to the nucleus and inhibited the phosphorylation of IκB and IKKα/β, events required for activation of the NF-κB pathway. These effects were not dependent on AMPK activation or on the context of cellular senescence, as metformin inhibited the NF-κB pathway stimulated by lipopolysaccharide (LPS) in ampk null fibroblasts and in macrophages. Taken together, our results provide a novel mechanism for the antiaging and antineoplastic effects of metformin reported in animal models and in diabetic patients taking this drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.12075DOI Listing
June 2013
-->