Publications by authors named "Scott A Ribich"

7 Publications

  • Page 1 of 1

Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss.

Cancer Cell 2019 07 27;36(1):100-114.e25. Epub 2019 Jun 27.

Epigenetics Research Unit, GlaxoSmithKline, Collegeville, PA 19426, USA. Electronic address:

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2019.05.014DOI Listing
July 2019

Identification of a CARM1 Inhibitor with Potent In Vitro and In Vivo Activity in Preclinical Models of Multiple Myeloma.

Sci Rep 2017 12 21;7(1):17993. Epub 2017 Dec 21.

Epizyme, Inc., Cambridge, Massachusetts, USA.

CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-18446-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740082PMC
December 2017

EZH2 Inhibition by Tazemetostat Results in Altered Dependency on B-cell Activation Signaling in DLBCL.

Mol Cancer Ther 2017 11 23;16(11):2586-2597. Epub 2017 Aug 23.

Epizyme Inc., Cambridge, Massachusetts.

The EZH2 small-molecule inhibitor tazemetostat (EPZ-6438) is currently being evaluated in phase II clinical trials for the treatment of non-Hodgkin lymphoma (NHL). We have previously shown that EZH2 inhibitors display an antiproliferative effect in multiple preclinical models of NHL, and that models bearing gain-of-function mutations in were consistently more sensitive to EZH2 inhibition than lymphomas with wild-type (WT) Here, we demonstrate that cell lines bearing mutations show a cytotoxic response, while cell lines with WT- show a cytostatic response and only tumor growth inhibition without regression in a xenograft model. Previous work has demonstrated that cotreatment with tazemetostat and glucocorticoid receptor agonists lead to a synergistic antiproliferative effect in both mutant and wild-type backgrounds, which may provide clues to the mechanism of action of EZH2 inhibition in WT- models. Multiple agents that inhibit the B-cell receptor pathway (e.g., ibrutinib) were found to have synergistic benefit when combined with tazemetostat in both mutant and WT- backgrounds of diffuse large B-cell lymphomas (DLBCL). The relationship between B-cell activation and EZH2 inhibition is consistent with the proposed role of EZH2 in B-cell maturation. To further support this, we observe that cell lines treated with tazemetostat show an increase in the B-cell maturation regulator, /BLIMP1, and gene signatures corresponding to more advanced stages of maturation. These findings suggest that EZH2 inhibition in both mutant and wild-type backgrounds leads to increased B-cell maturation and a greater dependence on B-cell activation signaling. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-16-0840DOI Listing
November 2017

Selective Killing of SMARCA2- and SMARCA4-deficient Small Cell Carcinoma of the Ovary, Hypercalcemic Type Cells by Inhibition of EZH2: and Preclinical Models.

Mol Cancer Ther 2017 05 14;16(5):850-860. Epub 2017 Mar 14.

Epizyme Inc., Cambridge, Massachusetts.

The SWI/SNF complex is a major regulator of gene expression and is increasingly thought to play an important role in human cancer, as evidenced by the high frequency of subunit mutations across virtually all cancer types. We previously reported that in preclinical models, malignant rhabdoid tumors, which are deficient in the SWI/SNF core component INI1 (SMARCB1), are selectively killed by inhibitors of the H3K27 histone methyltransferase EZH2. Given the demonstrated antagonistic activities of the SWI/SNF complex and the EZH2-containing PRC2 complex, we investigated whether additional cancers with SWI/SNF mutations are sensitive to selective EZH2 inhibition. It has been recently reported that ovarian cancers with dual loss of the redundant SWI/SNF components SMARCA4 and SMARCA2 are characteristic of a rare rhabdoid-like subtype known as small-cell carcinoma of the ovary hypercalcemic type (SCCOHT). Here, we provide evidence that a subset of commonly used ovarian carcinoma cell lines were misdiagnosed and instead were derived from a SCCOHT tumor. We also demonstrate that tazemetostat, a potent and selective EZH2 inhibitor currently in phase II clinical trials, induces potent antiproliferative and antitumor effects in SCCOHT cell lines and xenografts deficient in both SMARCA2 and SMARCA4. These results exemplify an additional class of rhabdoid-like tumors that are dependent on EZH2 activity for survival. .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-16-0678DOI Listing
May 2017

Aryl Pyrazoles as Potent Inhibitors of Arginine Methyltransferases: Identification of the First PRMT6 Tool Compound.

ACS Med Chem Lett 2015 Jun 6;6(6):655-9. Epub 2015 Apr 6.

Epizyme, Inc. , 400 Technology Square, Fourth Floor, Cambridge, Massachusetts 02138, United States.

A novel aryl pyrazole series of arginine methyltransferase inhibitors has been identified. Synthesis of analogues within this series yielded the first potent, selective, small molecule PRMT6 inhibitor tool compound, EPZ020411. PRMT6 overexpression has been reported in several cancer types suggesting that inhibition of PRMT6 activity may have therapeutic utility. Identification of EPZ020411 provides the field with the first small molecule tool compound for target validation studies. EPZ020411 shows good bioavailability following subcutaneous dosing in rats making it a suitable tool for in vivo studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmedchemlett.5b00071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468411PMC
June 2015

A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models.

Nat Chem Biol 2015 Jun 27;11(6):432-7. Epub 2015 Apr 27.

Departments of Biology and Molecular Discovery, Epizyme, Inc., Cambridge, Massachusetts, USA.

Protein arginine methyltransferase-5 (PRMT5) is reported to have a role in diverse cellular processes, including tumorigenesis, and its overexpression is observed in cell lines and primary patient samples derived from lymphomas, particularly mantle cell lymphoma (MCL). Here we describe the identification and characterization of a potent and selective inhibitor of PRMT5 with antiproliferative effects in both in vitro and in vivo models of MCL. EPZ015666 (GSK3235025) is an orally available inhibitor of PRMT5 enzymatic activity in biochemical assays with a half-maximal inhibitory concentration (IC50) of 22 nM and broad selectivity against a panel of other histone methyltransferases. Treatment of MCL cell lines with EPZ015666 led to inhibition of SmD3 methylation and cell death, with IC50 values in the nanomolar range. Oral dosing with EPZ015666 demonstrated dose-dependent antitumor activity in multiple MCL xenograft models. EPZ015666 represents a validated chemical probe for further study of PRMT5 biology and arginine methylation in cancer and other diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchembio.1810DOI Listing
June 2015

Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing.

Mol Cell 2002 Jul;10(1):21-33

Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA. In addition, we provide evidence that alternative splicing of variable exons within a gene cluster occurs via a cis-splicing mechanism. However, virtually every variable exon can engage in trans-splicing with constant exons from another cluster, albeit at a far lower level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1097-2765(02)00578-6DOI Listing
July 2002