Publications by authors named "Scherazad Kootar"

7 Publications

  • Page 1 of 1

Histone Lysine Demethylase JMJD2D/KDM4D and Family Members Mediate Effects of Chronic Social Defeat Stress on Mouse Hippocampal Neurogenesis and Mood Disorders.

Brain Sci 2020 Nov 9;10(11). Epub 2020 Nov 9.

Epigenetics & Neuropsychiatric Disorders Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Habsiguda, Hyderabad, Telangana 500007, India.

Depression, anxiety and related mood disorders are major psychiatric illnesses worldwide, and chronic stress appears to be one of the primary underlying causes. Therapeutics to treat these debilitating disorders without a relapse are limited due to the incomplete molecular understanding of their etiopathology. In addition to the well-studied genetic component, research in the past two decades has implicated diverse epigenetic mechanisms in mediating the negative effects of chronic stressful events on neural circuits. This includes the cognitive circuitry, where the dynamic hippocampal dentate gyrus (DG) neurogenesis gets affected in depression and related affective disorders. Most of these epigenetic studies have focused on the impact of acetylation/deacetylation and methylation of several histone lysine residues on neural gene expression. However, there is a dearth of investigation into the role of demethylation of these lysine residues in chronic stress-induced changes in neurogenesis that results in altered behaviour. Here, using the chronic social defeat stress (CSDS) paradigm to induce depression and anxiety in C57BL/6 mice and DG neural stem/progenitor cell (NSCs/NPCs) culture we show the role of the members of the JMJD2/KDM4 family of histone lysine demethylases (KDMs) in mediating stress-induced changes in DG neurogenesis and mood disorders. The study suggests a critical role of JMJD2D in DG neurogenesis. Altered enrichment of JMJD2D on the promoters of (inhibitor of differentiation 2) and (SRY-Box Transcription Factor 2) was observed during proliferation and differentiation of NSCs/NPCs obtained from the DG. This would affect the demethylation of repressive epigenetic mark H3K9, thus activating or repressing these and possibly other genes involved in regulating proliferation and differentiation of DG NSCs/NPCs. Treatment of the NSCs/NPCs culture with Dimethyloxallyl Glycine (DMOG), an inhibitor of JMJDs, led to attenuation in their proliferation capacity. Additionally, systemic administration of DMOG in mice for 10 days induced depression-like and anxiety-like phenotype without any stress exposure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/brainsci10110833DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695311PMC
November 2020

Fellutamide B Synthetic Path Intermediates with in Vitro Neuroactive Function Shows Mood-Elevating Effect in Stress-Induced Zebrafish Model.

ACS Omega 2018 Sep 5;3(9):10534-10544. Epub 2018 Sep 5.

Chemical Biology and Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India.

Fellutamide B is reported to have cytotoxic and proteasome inhibitory activity. Interestingly, fellutamide B and its simplified analogues have also been observed for the neurotrophic activity by stimulating the synthesis and secretion of neurotrophins. Owing to the interesting structural and potent neurotrophic role of fellutamide B (a lipopeptide aldehyde), we have assessed the synthetic path intermediates (compounds A-D) of fellutamide B for their neuroactive potential (in vitro and in vivo). We have observed few compounds (comp #A-D) to have potential neurite outgrowth activity in Neuro2a cells with no observable negative effect on the cell viability. In addition, most compounds (comp #A, C, and D) have shown neurogenic activity ex vivo in hippocampal neurosphere culture, with increased acetyl H3 and acetyl H4 induction ability (comp #C). Furthermore, the intermediate product comp #C has shown anxiolytic and antidepressant-like activity in novel tank test and social interaction test, in the chronic unpredictable stress model of zebrafish mood disorder, inducing BDNF gene expression in the telencephalon region of the fish brain. Our results thus demonstrate that the fellutamide B synthetic path intermediates have potential neurotrophic, neurogenic, and mood-elevating effects and thus good prospect to be developed as potential therapeutics to treat psychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsomega.8b00456DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173481PMC
September 2018

Modification in MRI contrast myelogram by instillation of intrathecal preservative-free normal saline to demonstrate CSF spinal leaks.

Neurol India 2018 Jul-Aug;66(4):1187-1189

Department of Imaging, Kokilaben Dhirubhai Ambani Hospital and Medical Research Centre, Mumbai, Maharashtra, India.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/0028-3886.237023DOI Listing
September 2019

Identification of an acute functional cross-talk between amyloid-β and glucocorticoid receptors at hippocampal excitatory synapses.

Neurobiol Dis 2018 10 9;118:117-128. Epub 2018 Jul 9.

Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France. Electronic address:

Amyloid-β is a peptide released by synapses in physiological conditions and its pathological accumulation in brain structures necessary for memory processing represents a key toxic hallmark underlying Alzheimer's disease. The oligomeric form of Amyloid-β (Aβο) is now believed to represent the main Amyloid-β species affecting synapse function. Yet, the exact molecular mechanism by which Aβο modifies synapse function remains to be fully elucidated. There is accumulating evidence that glucocorticoid receptors (GRs) might participate in Aβο generation and activity in the brain. Here, we provide evidence for an acute functional cross-talk between Aβ and GRs at hippocampal excitatory synapses. Using live imaging and biochemical analysis of post-synaptic densities (PSD) in cultured hippocampal neurons, we show that synthetic Aβo (100 nM) increases GR levels in spines and PSD. Also, in these cultured neurons, blocking GRs with two different GR antagonists prevents Aβo-mediated PSD95 increase within the PSD. By analyzing long-term potentiation (LTP) and long-term depression (LTD) in ex vivo hippocampal slices after pharmacologically blocking GR, we also show that GR signaling is necessary for Aβo-mediated LTP impairment, but not Aβo-mediated LTD induction. The necessity of neuronal GRs for Aβo-mediated LTP was confirmed by genetically removing GRs in vivo from CA1 neurons using conditional GR mutant mice. These results indicate a tight functional interplay between GR and Aβ activities at excitatory synapses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2018.07.001DOI Listing
October 2018

A novel natural product inspired scaffold with robust neurotrophic, neurogenic and neuroprotective action.

Sci Rep 2015 Sep 21;5:14134. Epub 2015 Sep 21.

CSIR- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India.

In search for drugs to treat neuropsychiatric disorders wherein neurotrophic and neurogenic properties are affected, two neurotrophically active small molecules specially crafted following natural product leads based on 2-oxa-spiro[5.5]-undecane scaffold, have been thoroughly evaluated for their neurotrophic, neurogenic and neuroprotective potential in ex vivo primary culture and in vivo zebrafish and mouse models. The outcome of in vivo investigations suggest that one of these molecules is more neurotrophic than neurogenic while the other one is more neurogenic than neurotrophic and the former exhibits remarkable neuroprotection in a mouse acute ischemic stroke model. The molecular mechanisms of action of these compounds appear to be through the TrkB-MEK-ERK-CREB-BDNF pathway as pre-treatment with neurotrophin receptor TrkB inhibitor ANA-12 and MEK inhibitor PD98059 attenuates the neurotrophic action of compounds.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep14134DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4585672PMC
September 2015

η-Secretase processing of APP inhibits neuronal activity in the hippocampus.

Nature 2015 Oct 31;526(7573):443-7. Epub 2015 Aug 31.

Biomedical Center (BMC), Ludwig-Maximilians-University Munich, 81377 Munich, Germany.

Alzheimer disease (AD) is characterized by the accumulation of amyloid plaques, which are predominantly composed of amyloid-β peptide. Two principal physiological pathways either prevent or promote amyloid-β generation from its precursor, β-amyloid precursor protein (APP), in a competitive manner. Although APP processing has been studied in great detail, unknown proteolytic events seem to hinder stoichiometric analyses of APP metabolism in vivo. Here we describe a new physiological APP processing pathway, which generates proteolytic fragments capable of inhibiting neuronal activity within the hippocampus. We identify higher molecular mass carboxy-terminal fragments (CTFs) of APP, termed CTF-η, in addition to the long-known CTF-α and CTF-β fragments generated by the α- and β-secretases ADAM10 (a disintegrin and metalloproteinase 10) and BACE1 (β-site APP cleaving enzyme 1), respectively. CTF-η generation is mediated in part by membrane-bound matrix metalloproteinases such as MT5-MMP, referred to as η-secretase activity. η-Secretase cleavage occurs primarily at amino acids 504-505 of APP695, releasing a truncated ectodomain. After shedding of this ectodomain, CTF-η is further processed by ADAM10 and BACE1 to release long and short Aη peptides (termed Aη-α and Aη-β). CTFs produced by η-secretase are enriched in dystrophic neurites in an AD mouse model and in human AD brains. Genetic and pharmacological inhibition of BACE1 activity results in robust accumulation of CTF-η and Aη-α. In mice treated with a potent BACE1 inhibitor, hippocampal long-term potentiation was reduced. Notably, when recombinant or synthetic Aη-α was applied on hippocampal slices ex vivo, long-term potentiation was lowered. Furthermore, in vivo single-cell two-photon calcium imaging showed that hippocampal neuronal activity was attenuated by Aη-α. These findings not only demonstrate a major functionally relevant APP processing pathway, but may also indicate potential translational relevance for therapeutic strategies targeting APP processing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature14864DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6570618PMC
October 2015

Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer's disease.

Neuropsychopharmacology 2015 Jun 27;40(7):1772-81. Epub 2015 Jan 27.

Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS), Université de Nice Sophia Antipolis, UMR 7275, Valbonne, France.

The early phase of Alzheimer's disease (AD) is characterized by hippocampus-dependent memory deficits and impaired synaptic plasticity. Increasing evidence suggests that stress and dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis, marked by the elevated circulating glucocorticoids, are risk factors for AD onset. How these changes contribute to early hippocampal dysfunction remains unclear. Using an elaborated version of the object recognition task, we carefully monitored alterations in key components of episodic memory, the first type of memory altered in AD patients, in early symptomatic Tg2576 AD mice. We also combined biochemical and ex vivo electrophysiological analyses to reveal novel cellular and molecular dysregulations underpinning the onset of the pathology. We show that HPA axis, circadian rhythm, and feedback mechanisms, as well as episodic memory, are compromised in this early symptomatic phase, reminiscent of human AD pathology. The cognitive decline could be rescued by subchronic in vivo treatment with RU486, a glucocorticoid receptor antagonist. These observed phenotypes were paralleled by a specific enhancement of N-Methyl-D-aspartic acid receptor (NMDAR)-dependent LTD in CA1 pyramidal neurons, whereas LTP and metabotropic glutamate receptor-dependent LTD remain unchanged. NMDAR transmission was also enhanced. Finally, we show that, as for the behavioral deficit, RU486 treatment rescues this abnormal synaptic phenotype. These preclinical results define glucocorticoid signaling as a contributing factor to both episodic memory loss and early synaptic failure in this AD mouse model, and suggest that glucocorticoid receptor targeting strategies could be beneficial to delay AD onset.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2015.25DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915261PMC
June 2015
-->