Publications by authors named "Saravanamuth Vigneswaran"

5 Publications

  • Page 1 of 1

Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review.

J Hazard Mater 2019 07 5;373:258-270. Epub 2019 Mar 5.

Department of Environmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan. Electronic address:

An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl, NO, SO, and CO) provide a high anion exchange capacity (53-520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer-Emmett-Teller specific surface area of LDH (1.80-179 m/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Q) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Q values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° <0) and endothermically (ΔH° >0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.03.018DOI Listing
July 2019

Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies.

J Environ Manage 2019 Jul 11;241:535-548. Epub 2018 Oct 11.

Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Electronic address:

Calcium carbonate (CaCO)-enriched biomaterial derived from freshwater mussel shells (FMS) was used as a non-porous biosorbent to explore the characteristics and mechanisms of cadmium adsorption in aqueous solution. The adsorption mechanism was proposed by comparing the FMS properties before and after adsorption alongside various adsorption studies. The FMS biosorbent was characterized using nitrogen adsorption/desorption isotherm, X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, and point of zero charge. The results of batch experiments indicated that FMS possessed an excellent affinity to Cd(II) ions within solutions pH higher than 4.0. An increase in ionic strength resulted in a significant decrease in the amount of Cd(II) adsorbed onto FMS. Kinetic study demonstrated that the adsorption process quickly reached equilibrium at approximately 60 min. The FMS biosorbent exhibited the Langmuir maximum adsorption capacity as follows: 18.2 mg/g at 10 °C < 26.0 mg/g at 30 °C < 28.6 mg/g at 50 °C. The Cd(II) adsorption process was irreversible, spontaneous (-ΔG°), endothermic (+ΔH°), and more random (+ΔS°). Selective order (mmol/g) of metal cations followed as Pb > Cd > Cu > Cr > Zn. For column experiments, the highest Thomas adsorption capacity (7.86 mg/g) was achieved at a flow rate (9 mL/min), initial Cd(II) concentration (10 mg/L), and bed height (5 cm). The Cd(II) removal by FMS was regarded as non-activated chemisorption that occurred very rapidly (even at a low temperature) with a low magnitude of activation energy. Primary adsorption mechanism was surface precipitation. Cadmium precipitated in the primary (Cd,Ca)CO form with a calcite-type structure on the FMS surface. A crust of rhombohedral crystals on the substrate was observed by SEM. Freshwater mussel shells have the potential as a renewable adsorbent to remove cadmium from water.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.09.079DOI Listing
July 2019

A review on sludge dewatering indices.

Water Sci Technol 2016 ;74(1):1-16

Faculty of Engineering and IT, University of Technology, Sydney (UTS), PO Box 123, Broadway, NSW 2007, Australia E-mail:

Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2016.102DOI Listing
February 2017

Removal of phosphorus by a high rate membrane adsorption hybrid system.

Bioresour Technol 2016 Feb 28;201:365-9. Epub 2015 Nov 28.

School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia. Electronic address:

Membrane adsorption hybrid system (MAHS) was evaluated for the removal of phosphate from a high rate membrane bioreactor (HR-MBR) effluent. The HR-MBR was operated at permeate flux of 30L/m(2)h. The results indicated that the HR-MBR could eliminate 93.1±1.5% of DOC while removing less than 53% phosphate (PO4-P). Due to low phosphate removal by HR-MBR, a post-treatment of strong base anion exchange resin (Dowex(∗)21K-XLT), and zirconium (IV) hydroxide were used as adsorbent in MAHS for further removal of phosphate from HR-MBR effluent. It was found that the MAHS enabled to eliminate more than 85% of PO4-P from HR-MBR effluent. Hence, HR-MBR followed by MAHS lead to simultaneous removal of organics and phosphate in a reliable manner. The experiments were conducted only for a short period to investigate the efficiency of these resins/adsorbents on the removal of phosphorus and high rate MBR for organic removal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.11.045DOI Listing
February 2016

Adsorption and removal of arsenic from water by iron ore mining waste.

Water Sci Technol 2009 ;60(9):2301-8

Faculty of Engineering and Information Technology, University of Technology, Sydney, P.O. Box 123, Broadway NSW, 2007, Australia.

There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe(3)O(4)) and had a large surface area of 89.7 m(2)/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 microg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 microg/L while achieving a removal efficiency of about 80% for Mn(2 + ) and PO(4) (3-). This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2009.667DOI Listing
January 2010