Publications by authors named "Sara Proietti"

31 Publications

Survival Pathways Are Differently Affected by Microgravity in Normal and Cancerous Breast Cells.

Int J Mol Sci 2021 Jan 16;22(2). Epub 2021 Jan 16.

Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.

Metazoan living cells exposed to microgravity undergo dramatic changes in morphological and biological properties, which ultimately lead to apoptosis and phenotype reprogramming. However, apoptosis can occur at very different rates depending on the experimental model, and in some cases, cells seem to be paradoxically protected from programmed cell death during weightlessness. These controversial results can be explained by considering the notion that the behavior of adherent cells dramatically diverges in respect to that of detached cells, organized into organoids-like, floating structures. We investigated both normal (MCF10A) and cancerous (MCF-7) breast cells and found that appreciable apoptosis occurs only after 72 h in MCF-7 cells growing in organoid-like structures, in which major modifications of cytoskeleton components were observed. Indeed, preserving cell attachment to the substrate allows cells to upregulate distinct Akt- and ERK-dependent pathways in MCF-7 and MCF-10A cells, respectively. These findings show that survival strategies may differ between cell types but cannot provide sufficient protection against weightlessness-induced apoptosis alone if adhesion to the substrate is perturbed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22020862DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829699PMC
January 2021

Tumor reversion and embryo morphogenetic factors.

Semin Cancer Biol 2020 Sep 10. Epub 2020 Sep 10.

Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy; Systems Biology Group Lab., Sapienza University of Rome, Rome, Italy. Electronic address:

Several studies have shown that cancer cells can be "phenotypically reversed", thus achieving a "tumor reversion", by losing malignant hallmarks as migrating and invasive capabilities. These findings suggest that genome activity can switch to assume a different functional configuration, i.e. a different Gene Regulatory Network pattern. Indeed, once "destabilized", cancer cells enter into a critical transition phase that can be adequately "oriented" by yet unidentified morphogenetic factors - acting on both cells and their microenvironment - that trigger an orchestrated array of structural and epigenetic changes. Such process can bypass genetic abnormalities, through rerouting cells toward a benign phenotype. Oocytes and embryonic tissues, obtained by animals and humans, display such "reprogramming" capability, as a number of yet scarcely identified embryo-derived factors can revert the malignant phenotype of several types of tumors. Mechanisms involved in the reversion process include the modification of cell-microenvironment cross talk (mostly through cytoskeleton reshaping), chromatin opening, demethylation, and epigenetic changes, modulation of biochemical pathways, comprising TCTP-p53, PI3K-AKT, FGF, Wnt, and TGF-β-dependent cascades. Results herein discussed promise to open new perspectives not only in the comprehension of cancer biology but also toward different therapeutic options, as suggested by a few preliminary clinical studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcancer.2020.09.005DOI Listing
September 2020

Active Fraction from Embryo Fish Extracts Induces Reversion of the Malignant Invasive Phenotype in Breast Cancer through Down-regulation of TCTP and Modulation of E-cadherin/β-catenin Pathway.

Int J Mol Sci 2019 Apr 30;20(9). Epub 2019 Apr 30.

Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, "Sapienza" University of Rome, 00161 Rome, Italy.

Some yet unidentified factors released by both oocyte and embryonic microenvironments demonstrated to be non-permissive for tumor development and display the remarkable ability to foster cell/tissue reprogramming, thus ultimately reversing the malignant phenotype. In the present study we observed how molecular factors extracted from Zebrafish embryos during specific developmental phases (20 somites) significantly antagonize proliferation of breast cancer cells, while reversing a number of prominent aspects of malignancy. Embryo extracts reduce cell proliferation, enhance apoptosis, and dramatically inhibit both invasiveness and migrating capabilities of cancer cells. Counteracting the invasive phenotype is a relevant issue in controlling tumor spreading and metastasis. Moreover, such effect is not limited to cancerous cells as embryo extracts were also effective in inhibiting migration and invasiveness displayed by normal breast cells undergoing epithelial-mesenchymal transition upon TGF-β1 stimulation. The reversion program involves the modulation of E-cadherin/β-catenin pathway, cytoskeleton remodeling with dramatic reduction in vinculin, as well as downregulation of TCTP and the concomitant increase in p53 levels. Our findings highlight that-contrary to the prevailing current "dogma", which posits that neoplastic cells are irreversibly "committed"-the malignant phenotype can ultimately be "reversed", at least partially, in response to environmental morphogenetic influences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms20092151DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539734PMC
April 2019

Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation.

J Pineal Res 2018 May 8;64(4):e12467. Epub 2018 Mar 8.

Systems Biology Group, Rome, Italy.

Through activation of the ERK pathway, nicotine, in both normal MCF-10A and low-malignant breast cancer cells (MCF7), promotes increased motility and invasiveness. Melatonin antagonizes both these effects by inhibiting almost completely ERK phosphorylation. As melatonin has no effect on nonstimulated cells, it is likely that melatonin can counteract ERK activation only downstream of nicotine-induced activation. This finding suggests that melatonin hampers ERK phosphorylation presumably by targeting a still unknown intermediate factor that connects nicotine stimulation to ERK phosphorylation. Furthermore, downstream of ERK activation, melatonin significantly reduces fascin and calpain activation while restoring normal vinculin levels. Melatonin also counteracts nicotine effects by reshaping the overall cytoskeleton architecture and abolishing invasive membrane protrusion. In addition, melatonin decreases nicotine-dependent ROCK1/ROCK2 activation, thus further inhibiting cell contractility and motility. Melatonin actions are most likely attributable to ERK inhibition, although melatonin could display other ERK-independent effects, namely through a direct modulation of additional molecular and structural factors, including coronin, cofilin, and cytoskeleton components.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12467DOI Listing
May 2018

Nicotine increases colon cancer cell migration and invasion through epithelial to mesenchymal transition (EMT): COX-2 involvement.

J Cell Physiol 2018 06 15;233(6):4935-4948. Epub 2018 Jan 15.

Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy.

Cigarette smoking is a recognized risk factor for colon cancer and nicotine, the principal active component of tobacco, plays a pivotal role in increasing colon cancer cell growth and survival. The aim of this study was to determine the effect of nicotine on cellular Caco-2 and HCT-8 migration and invasion, focusing on epithelial to mesenchymal transition (EMT) induction, and COX-2 pathway involvement. In both these cell lines, treatment with nicotine increased COX-2 expression and the release of its enzymatic product PGE . Moreover, nicotine-stimulated cells showed increased migratory and invasive behavior, mesenchymal markers up-regulation and epithelial markers down-regulation, nuclear translocation of the β-catenin, increase of MMP-2 and MMP-9 activity, and enhanced NF-κB expression. Noticeably, all these effects are largely mediated by COX-2 activity, as simultaneous treatment of both cell lines with nicotine and NS-398, a selective COX-2 inhibitor, greatly reduced the number of migrating and invading cells and reverted nicotine-induced EMT. These findings emphasize that nicotine triggers EMT, leading hence to increased migration and invasiveness of colon cancer cells. Thereby, the use of COX-2 inhibitor drugs might likely counteract nicotine-mediated EMT effects on colon cancer development and progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26323DOI Listing
June 2018

Alpha-Lipoic Acid Downregulates IL-1β and IL-6 by DNA Hypermethylation in SK-N-BE Neuroblastoma Cells.

Antioxidants (Basel) 2017 Sep 26;6(4). Epub 2017 Sep 26.

Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 16, 00161 Rome, Italy.

Alpha-lipoic acid (ALA) is a pleiotropic molecule with antioxidant and anti-inflammatory properties, of which the effects are exerted through the modulation of NF-kB. This nuclear factor, in fact, modulates different inflammatory cytokines, including IL-1b and IL-6, in different tissues and cell types. We recently showed that IL-1b and IL-6 DNA methylation is modulated in the brain of Alzheimer's disease patients, and that IL-1b expression is associated to DNA methylation in the brain of patients with tuberous sclerosis complex. These results prompted us to ask whether ALA-induced repression of IL-1b and IL-6 was dependent on DNA methylation. Therefore, we profiled DNA methylation in the 5'-flanking region of the two aforementioned genes in SK-N-BE human neuroblastoma cells cultured in presence of ALA 0.5 mM. Our experimental data pointed out that the two promoters are hypermethylated in cells supplemented with ALA, both at CpG and non-CpG sites. Moreover, the observed hypermethylation is associated with decreased mRNA expression and decreased cytokine release. These results reinforce previous findings indicating that IL-1b and IL-6 undergo DNA methylation-dependent modulation in neural models and pave the road to study the epigenetic mechanisms triggered by ALA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox6040074DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745484PMC
September 2017

Melatonin, mitochondria, and the cancer cell.

Cell Mol Life Sci 2017 11 7;74(21):4015-4025. Epub 2017 Aug 7.

Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.

The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-017-2612-zDOI Listing
November 2017

Tumor Reversion: Mesenchymal-Epithelial Transition as a Critical Step in Managing the Tumor-Microenvironment Cross-Talk.

Curr Pharm Des 2017 ;23(32):4705-4715

Department of Surgery "Pietro Valdoni", Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome. Italy.

Tumour reversion represents a promising field of investigation. The occurrence of cancer reversion both in vitro and in vivo has been ascertained by an increasing number of reports. The reverting process may be triggered in a wide range of different cancer types by both molecular and physical cues. This process encompasses mandatorily a change in the cell-stroma interactions, leading to profound modification in tissue architecture. Indeed, cancer reversion may be obtained by only resetting the overall burden of biophysical cues acting on the cell-stroma system, thus indicating that conformational changes induced by cell shape and cytoskeleton remodelling trigger downstream the cascade of molecular events required for phenotypic reversion. Ultimately, epigenetic regulation of gene expression (chiefly involving presenilin-1 and translationally controlled tumour protein) and modulation of a few critical biochemical pathways trigger the mesenchymal-epithelial transition, deemed to be a stable cancer reversion. As cancer can be successfully 'reprogrammed' by modifying the dynamical cross-talk with its microenvironment thus the cell-stroma interactions must be recognized as targets for pharmacological intervention. Yet, understanding cancer reversion remains challenging and refinement in modelling such processes in vitro as well as in vivo is urgently warranted. This new approach bears huge implications, from both a theoretical and clinical perspective, as it may facilitate the design of a novel anticancer strategy focused on mimicking or activating the tumour reversion pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612823666170609082757DOI Listing
March 2019

Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes.

Sci Rep 2017 04 3;7(1):538. Epub 2017 Apr 3.

Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy.

The microgravitational environment is known to affect the cellular behaviour inducing modulation of gene expression and enzymatic activities, epigenetic modifications and alterations of the structural organization. Simulated microgravity, obtained in the laboratory setting through the use of a Random Positioning Machine (RPM), represents a well recognized and useful tool for the experimental studies of the cellular adaptations and molecular changes in response to weightlessness. Short exposure of cultured human keratinocytes to the RPM microgravity influences the cellular circadian clock oscillation. Therefore, here we searched for changes on the regenerative ability and response to tissue damage of human epidermal cells through the analysis of the effects of the simulated microgravity on the re-epithelialization phase of the repair and wound healing process. Combining morphological, biochemical and molecular approaches, we found that the simulated microgravity exposure of human keratinocytes promotes a migratory behavior and triggers the epithelial-mesenchymal transition (EMT) through expression of the typical EMT transcription factors and markers, such as Snail1, Snail2 and ZEB2, metalloproteases, mesenchymal adhesion molecules and cytoskeletal components.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-00602-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428850PMC
April 2017

Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement.

Exp Cell Res 2016 07 26;345(1):37-50. Epub 2016 May 26.

Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, viale Regina Elena 324, 00161 Rome, Italy. Electronic address:

Inositol displays multi-targeted effects on many biochemical pathways involved in epithelial-mesenchymal transition (EMT). As Akt activation is inhibited by inositol, we investigated if such effect could hamper EMT in MDA-MB-231 breast cancer cells. In cancer cells treated with pharmacological doses of inositol E-cadherin was increased, β-catenin was redistributed behind cell membrane, and metalloproteinase-9 was significantly reduced, while motility and invading capacity were severely inhibited. Those changes were associated with a significant down-regulation of PI3K/Akt activity, leading to a decrease in downstream signaling effectors: NF-kB, COX-2, and SNAI1. Inositol-mediated inhibition of PS1 leads to lowered Notch 1 release, thus contributing in decreasing SNAI1 levels. Overall, these data indicated that inositol inhibits the principal molecular pathway supporting EMT. Similar results were obtained in ZR-75, a highly metastatic breast cancer line. These findings are coupled with significant changes on cytoskeleton. Inositol slowed-down vimentin expression in cells placed behind the wound-healing edge and stabilized cortical F-actin. Moreover, lamellipodia and filopodia, two specific membrane extensions enabling cell migration and invasiveness, were no longer detectable after inositol addiction. Additionally, fascin and cofilin, two mandatory required components for F-actin assembling within cell protrusions, were highly reduced. These data suggest that inositol may induce an EMT reversion in breast cancer cells, suppressing motility and invasiveness through cytoskeleton modifications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2016.05.007DOI Listing
July 2016

Paradoxical E-cadherin increase in 5FU-resistant colon cancer is unaffected during mesenchymal-epithelial reversion induced by γ-secretase inhibition.

Life Sci 2016 Jan 30;145:174-83. Epub 2015 Dec 30.

Department of Experimental Medicine, Sapienza University of Rome, Systems Biology Group Lab, viale Regina Elena 324, 00161 Rome, Italy; Systems Biology Group Lab, Sapienza University of Rome, Rome, Italy. Electronic address:

Aim: Presenilin-1 (PS1), the main component of γ-secretase activity support a key role during Epithelial-Mesenchymal Transition (EMT) and chemoresistance acquisition by triggering a complex sequence of molecular events, including E-cadherin down-regulation. However, we hypothesize that EMT and chemoresistance should be deemed separate processes in HCT-8 colon cancer cells.

Main Methods: HCT-8 and HCT-8FUres invasion was evaluated by trans-well assay. uPA activity was detected by zymography. Prostaglandin E2 levels were quantified using an ELISA kit. E-cadherin FL and CTF2, PS1, Notch1, Cyclin D1, COX2, SNAI1 and α-SMA expression were determined using Western blot technique. β-Catenin localization was observed by confocal microscopy. Cell apoptosis was evaluated by cytofluorimetric assay, and measurement of caspase-3 and cl-PARP. γ-Secretase activity was inhibited by DAPT, a γ-secretase inhibitor.

Key Findings: Chemoresistant HCT-8 underwent EMT that can be efficiently reversed by inhibiting PS1 activity, leading thus to a normalization of mostly of the pivotal features showed by the invasive cancer phenotype. Indeed, we observed decreased SNAI1 and Notch 1 activation, altogether with reduced E-cadherin cleavage. Concomitantly, resistant HCT-8 invasiveness was almost completely abolished. However, such reversion was not followed by any increase in apoptotic rate, not by changes in E-cadherin levels. Indeed, despite HCT-8FUres underwent an undeniable EMT, full-length E-cadherin levels were found remarkably higher than those observed in wild HCT-8.

Significance: High E-cadherin concentration in presence of enhanced γ-secretase activity is incontestably a paradoxically result, highlighting that E-cadherin loss is not a pre-requisite for EMT. Additionally, EMT and chemoresistance acquisition in HCT-8 should be considered as distinct processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2015.12.048DOI Listing
January 2016

Multiwalled carbon nanotube buckypaper induces cell cycle arrest and apoptosis in human leukemia cell lines through modulation of AKT and MAPK signaling pathways.

Toxicol In Vitro 2015 Oct 18;29(7):1298-308. Epub 2015 May 18.

Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy; Azienda Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy. Electronic address:

MWCNT buckypaper (BP) shows physico-chemical and mechanical properties that make it potentially useful as a substrate in nano-bio interface research including in tissue engineering. When used as a scaffold material, BP comes into contact with host cells and surrounding tissues; therefore it is critical to determine its biocompatibility and interaction with living systems. The aim of this study was to investigate BP effects on cell growth, apoptosis and reactive oxygen species (ROS) production in three human leukemia cell lines HL-60, U-937 and K-562. BP was able to induce both the reduction of cell proliferation, associated with an arrest in G0/G1 phase of cell cycle and the increase of apoptosis in leukemic cell lines, thus exerting both cytostatic and cytotoxic effects. The growth inhibitory effect was likely mediated by the decrease of cyclins D, E, A, B1 levels and CDK4 expression; meanwhile, the apoptotic effect, not mediated by ROS production, was presumably due to the combined action of the survival and pro-apoptotic AKT and MAPK signal transduction pathways. These results raised the issue of biocompatibility of MWCNT BP for the creation of carbon nanotubes based scaffolds to utilize as prostheses in tissue engineering.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2015.05.006DOI Listing
October 2015

Lung cancer stem cell lose their stemness default state after exposure to microgravity.

Biomed Res Int 2014 7;2014:470253. Epub 2014 Sep 7.

Department of Surgery "P.Valdoni," Sapienza University, 00161 Rome, Italy ; Department of Clinical and Molecular Medicine, Sapienza University, 00161 Rome, Italy ; Azienda Ospedaliera S. Andrea, 00189 Rome, Italy.

Microgravity influences cell differentiation by modifying the morphogenetic field in which stem cells are embedded. Preliminary data showed indeed that stem cells are committed to selective differentiation when exposed to real or simulated microgravity. Our study provides evidence that a similar event occurs when cancer stem cells (CSCs) are cultured in microgravity. In the same time, a significant increase in apoptosis was recorded: those data point out that microgravity rescues CSCs from their relative quiescent state, inducing CSCs to lose their stemness features, as documented by the decrease in ALDH and the downregulation of both Nanog and Oct-4 genes. Those traits were stably acquired and preserved by CSCs when cells were placed again on a 1 g field. Studies conducted in microgravity on CSCs may improve our understanding of the fundamental role exerted by biophysical forces in cancer cell growth and function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2014/470253DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170742PMC
June 2015

Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells.

Biomed Res Int 2014 18;2014:652434. Epub 2014 Aug 18.

Department of Experimental Medicine, "Sapienza" University of Rome, Systems Biology Group, Viale Regina Elena 324, Via A. Scarpa 14, 00161 Rome, Italy.

Microgravity exerts dramatic effects on cell morphology and functions, by disrupting cytoskeleton and adhesion structures, as well as by interfering with biochemical pathways and gene expression. Impairment of cells behavior has both practical and theoretical significance, given that investigations of mechanisms involved in microgravity-mediated effects may shed light on how biophysical constraints cooperate in shaping complex living systems. By exposing breast cancer MDA-MB-231 cells to simulated microgravity (~0.001 g), we observed the emergence of two morphological phenotypes, characterized by distinct membrane fractal values, surface area, and roundness. Moreover, the two phenotypes display different aggregation profiles and adherent behavior on the substrate. These morphological differences are mirrored by the concomitant dramatic functional changes in cell processes (proliferation and apoptosis) and signaling pathways (ERK, AKT, and Survivin). Furthermore, cytoskeleton undergoes a dramatic reorganization, eventually leading to a very different configuration between the two populations. These findings could be considered adaptive and reversible features, given that, by culturing microgravity-exposed cells into a normal gravity field, cells are enabled to recover their original phenotype. Overall these data outline the fundamental role gravity plays in shaping form and function in living systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2014/652434DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151603PMC
April 2015

Soft gel capsules improve melatonin's bioavailability in humans.

Expert Opin Drug Metab Toxicol 2014 Sep 21;10(9):1193-8. Epub 2014 Jul 21.

Sapienza University of Rome, Department of Surgery P. Valdoni , via A. Scarpa 14, 00166 Rome , Italy.

Objective: Oral bioavailability is one of the most important properties in drug design and development. A poor oral bioavailability can result in low efficacy and unpredictable response to a drug. Several dosages of melatonin have been used for various investigations to clarify its bioavailability in humans. Aiming to search for a pharmaceutical form, which is better absorbed, the pharmacokinetic (PK) profile of the new manufactured melatonin soft gelatin (soft gel) capsule form has been evaluated and compared with the commercially available melatonin powder.

Research Design And Methods: A total of 60 healthy volunteers received 1, 3 mg of melatonin powder and 1 mg of melatonin in soft gel capsules. PK profiles were obtained by analysis of melatonin plasma concentration, and the respective melatonin bioavailability was compared.

Results: Melatonin soft gel capsule form showed similar PK parameters compared with the highest doses of melatonin in powder form, but its bioavailability was improved.

Conclusions: Soft gel capsules improved the bioavailability of melatonin in humans even when administered dose was reduced. Considering the number of conditions in which melatonin supplementation is recommended, this evidence could support a broader use of melatonin in clinical practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425255.2014.943183DOI Listing
September 2014

Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells.

J Pineal Res 2014 Aug 10;57(1):120-9. Epub 2014 Jul 10.

Department of Surgery "P. Valdoni", "Sapienza" University of Rome, Rome, Italy.

Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12150DOI Listing
August 2014

Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes.

Int J Biochem Cell Biol 2014 Aug 9;53:24-34. Epub 2014 May 9.

Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy; Azienda Ospedaliera S. Andrea, Rome, Italy.

Circadian rhythms are highly conserved time tracking systems regulating important biological processes at both systemic and cellular levels. The present study was aimed to identify proteins and biological functions circadian regulated in human keratinocytes. HaCaT keratinocytes were entrained by temperature cycles, and a proteomic study was performed on cell fractions isolated under free running conditions at constant temperature. Bioinformatics analysis revealed that molecular clock entrainment was associated with changes in molecular components regulating cell proliferation, energy metabolism, transcription, translation and redox balance. Nuclear levels of the antioxidant enzyme Peroxiredoxin 2 (PRDX2) were found to oscillate rhythmically over two entire 24h long cycles. Donwregulation of PRDX2 resulted in upregulation of the mitochondrion-specific Peroxiredoxin 3 (PRDX3), all other members of the Peroxiredoxin family remained unaltered. Furthermore, PRDX2 knockdown increased intracellular levels of reactive oxygen species (ROS) and impaired cell cycle progression and proliferation. HaCaT cells transduced with a scramble shRNA were used as control. Our work is the first to show that nuclear levels of PRDX2 display circadian oscillation participating in the regulation of human keratinocytes redox balance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2014.04.024DOI Listing
August 2014

Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.

PLoS One 2013 30;8(12):e83770. Epub 2013 Dec 30.

Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy ; Italian Space Agency (ASI), Rome, Italy.

The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White) from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog). Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083770PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875474PMC
August 2014

Shape in migration: quantitative image analysis of migrating chemoresistant HCT-8 colon cancer cells.

Cell Adh Migr 2013 Sep-Oct;7(5):450-9. Epub 2013 Oct 22.

Department of Experimental Medicine; "Sapienza" University of Rome; Roma, Italy.

Unsuccessful cytotoxic anticancer treatments may contribute to tumor morphologic instability and consequent tissue invasion, promoting the selection of a more malignant phenotype. Indeed, morphological changes have been demonstrated to be more pronounced in strongly vs. weakly metastatic cells. By means of normalized bending energy, we have previously quantitatively defined the link between cell shape modifications and the acquisition of a more malignant phenotype by 5-FU-resistant colon cancer cells (HCT-8FUres). Such changes were significantly correlated with an increase in motility speed. Herein, we propose a method to quantitatively analyze the shape of wild and chemoresistant HCT-8 migration front cells during wound healing assay. We evaluated the reliability of parameters (area/perimeter ratio [A/p], circularity, roundness, fractal dimension, and solidity) in describing the biological behavior of the two cell lines, enabling hence in distinguishing the chemoresistant line from the other one. We found solidity index the parameter that better described the difference between chemoresistant and wild cells. Moreover, solidity is able to capture the differences between chemoresistant and wild cells at each time point of the migration process. Indeed, motility speed was found to be inversely correlated with solidity, a quantitative index of cell deformability. Deformability is an outstanding hallmark of the process leading to metastatic spread; consequently, solidity may be considered a marker of acquired metastatic property.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/cam.26765DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3903690PMC
September 2014

Nicotine increases survival in human colon cancer cells treated with chemotherapeutic drugs.

Toxicol In Vitro 2013 Dec 2;27(8):2256-63. Epub 2013 Oct 2.

Department of Clinical and Molecular Medicine, Sapienza University of Rome, Piazza Sassari 3, 00161 Rome, Italy; Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy.

Cigarette smoking is implicated in the development of colon cancer. Furthermore, nicotine increases cell proliferation and inhibits apoptosis through α7-nicotinic acetylcholine receptor (α7-nAChR) activation in human colon carcinoma cells. An open issue is whether nicotine interfere with colorectal cancer pharmacological treatment, by inhibiting drug-mediated apoptosis. To assess this hypothesis, we evaluated nicotine effect on Caco-2 and HCT-8 colon cancer cells, treated with 5-Fluorouracil (5-FU) and Camptothecin (CPT), chemotherapeutics commonly utilized as adjuvant treatment of colon cancer. Nicotine decreased anti-proliferative and pro-apoptotic effects exerted by chemotherapeutics on both cell lines. These effects partially reverted by exposure to α-bungarotoxin (α-BTX), an inhibitor of α7-nAChR. Nicotine addition to Caco-2 and HCT-8, treated with 5-FU or CPT, decreased the cleavage of substrate of caspase 3 and 7, poly-ADP-ribose polymerase (PARP). Moreover, P-ERK/ERK ratio was modified by nicotine addition to 5-FU and CPT treated cells in an opposite manner. However, when co-administrating PD98059, an ERK phosphorylation inhibitor, an increased apoptosis was observed. In Caco-2 and HCT-8 nicotine reverted 5-FU and CPT apoptotic effects through AKT phosphorylation, as demonstrated by apoptotic increase in presence of LY294002, an AKT phosphorylation inhibitor. Nicotine interfered with colorectal cancer pharmacological treatment in vitro by inhibiting apoptosis induced by chemotherapeutic drugs. Nicotine anti-apoptotic effects were exerted through ERK and AKT pathway activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2013.09.020DOI Listing
December 2013

Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review.

Expert Opin Ther Targets 2013 Dec 14;17(12):1483-96. Epub 2013 Sep 14.

University La Sapienza, Department of Experimental Medicine, Systems Biology Group , Rome , Italy

Introduction: Compelling evidence has highlighted the complex pleiotropic functions elicited by the melatonin in cancer cells. Melatonin behaves as a 'smart killer', i.e., modulating anti-apoptotic processes in normal cells, and triggering pro-apoptotic signals in cancer cells.

Areas Covered: Melatonin induces programmed cell death in a wide range of different tumors (breast, gastro-intestinal, hematological, prostate, osteosarcoma, melanoma, kidney, etc…). Mechanisms of action and molecular pathways involved in pro-apoptotic processes under melatonin treatment are discussed.

Expert Opinion: Melatonin involvement in apoptotic processes is a new and relevant field of investigation. Even in tumor models unresponsive to melatonin alone, this hormone can significantly amplify the cytostatic and the cytotoxic effects triggered by other compounds or conventional drugs. We are far from having a satisfactory understanding about how and when melatonin exerts its beneficial effects. Melatonin in the nanomolar range activates the intrinsic and/or the extrinsic apoptotic pathway in cancer cells, namely through an increase in the p53/MDM2p ratio and downregulation of Sirt1. This finding is of great relevance since there is intense research ongoing to identify nontoxic feasible inhibitors of MDM2 and Sirt1. Melatonin should be evaluated for the management of those cancers where both of these are overexpressed and functionally strategic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728222.2013.834890DOI Listing
December 2013

Grape seed extract suppresses MDA-MB231 breast cancer cell migration and invasion.

Eur J Nutr 2014 11;53(2):421-31. Epub 2013 Jun 11.

Department of Clinical and Molecular Medicine, La Sapienza University, Piazza Sassari 3, 00161, Rome, Italy.

Background And Aim: Breast cancer remains a leading cause of mortality among women. In metastasis, cascade migration of cancer cells and invasion of extracellular matrix (ECM) represent critical steps. Urokinase-type plasminogen activator (uPA), as well as metalloproteinases MMP-2 and MMP-9, strongly contribute to ECM remodelling, thus becoming associated with tumour migration and invasion. In addition, the high expression of cytoskeletal (CSK) proteins, as fascin, has been correlated with clinically aggressive metastatic tumours, and CSK proteins are thought to affect the migration of cancer cells. Consumption of fruits and vegetables, characterized by high procyanidin content, has been associated to a reduced mortality for breast cancer. Therefore, we investigated the biological effect of grape seed extract (GSE) on the highly metastatic MDA-MB231 breast cancer cell line, focusing on studying GSE ability in inhibiting two main metastatic processes, i.e., cell migration and invasion.

Methods: After MDA-MB231 breast cancer cells stimulated with GSE migration and invasion were evaluated by means of trans-well assays and uPA as well as MMPs activity was detected by gelatin zymography. Fascin, β-catenin and nuclear factor-κB (NF-κB) expression were determined using western blot technique. β-Catenin localization was observed by confocal microscopy.

Results: We observed that high concentrations of GSE inhibited cell proliferation and apoptosis. Conversely, low GSE concentration decreased cell migration and invasion, likely by hampering β-catenin expression and localization, fascin and NF-κB expression, as well as by decreasing the activity of uPA, MMP-2 and MMP-9.

Conclusions: These results make GSE a powerful candidate for developing preventive agents against cancer metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-013-0542-6DOI Listing
October 2014

Grape seed extract triggers apoptosis in Caco-2 human colon cancer cells through reactive oxygen species and calcium increase: extracellular signal-regulated kinase involvement.

Br J Nutr 2013 Sep 25;110(5):797-809. Epub 2013 Feb 25.

Department of Clinical and Molecular Medicine, Piazza Sassari 3, La Sapienza University, 00161 Rome, Italy.

Grape seed extract (GSE) from Italia, Palieri and Red Globe cultivars inhibits cell growth and induces apoptosis in Caco-2 human colon cancer cells in a dose-dependent manner. In order to investigate the mechanism(s) supporting the apoptotic process, we analysed reactive oxygen species (ROS) production, intracellular Ca2+ handling and extracellular signal-regulated kinase (ERK) activation. Upon exposure to GSE, ROS and intracellular Ca2+ levels increased in Caco-2 cells, concomitantly with ERK inactivation. As ERK activity is thought to be essential for promoting survival pathways, inhibition of this kinase is likely to play a relevant role in GSE-mediated anticancer effects. Indeed, pretreatment with N-acetyl cysteine, a ROS scavenger, reversed GSE-induced apoptosis, and promoted ERK phosphorylation. This effect was strengthened by ethylene glycol tetraacetic acid-mediated inhibition of extracellular Ca2+ influx. ROS and Ca2+ influx inhibition, in turn, increased ERK phosphorylation, and hence almost entirely suppressed GSE-mediated apoptosis. These data suggested that GSE triggers a previously unrecognised ERK-based mechanism, involving both ROS production and intracellular Ca2+ increase, eventually leading to apoptosis in cancer cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114512006095DOI Listing
September 2013

Molecular mechanisms of melatonin's inhibitory actions on breast cancers.

Cell Mol Life Sci 2013 Jun 25;70(12):2139-57. Epub 2012 Sep 25.

Department of Clinical and Molecular Medicine, University La Sapienza, Rome, Italy.

Melatonin is involved in many physiological functions and it plays an important role in many pathological processes as well. Melatonin has been shown to reduce the incidence of experimentally induced cancers and can significantly inhibit the growth of some human tumors, namely hormone-dependent cancers. The anticancer effects of melatonin have been observed in breast cancer, both in in vivo with models of chemically induced rat mammary tumors, and in vitro studies on human breast cancer cell lines. Melatonin acts at different physiological levels and its antitumoral properties are supported by a set of complex, different mechanisms of action, involving apoptosis activation, inhibition of proliferation, and cell differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-012-1161-8DOI Listing
June 2013

Nicotine stimulates proliferation and inhibits apoptosis in colon cancer cell lines through activation of survival pathways.

J Surg Res 2012 Nov 10;178(1):233-41. Epub 2012 Mar 10.

Department of Surgery Pietro Valdoni, Sapienza University of Rome, Rome, Italy.

Background: Colorectal cancer is one of the leading causes of cancer-related death throughout the world, and the risk to develop this malignant disease seems to be associated with long-term cigarette smoking. Nicotine, one of the major components of cigarette smoking, can stimulate cell proliferation and suppress apoptosis both in normal cells and in several human cancer cell lines derived from various organs. However, although nicotine appears to have a role in stimulating cell proliferation of colon cancer cells, there is no information on its role in inhibiting apoptosis in these cells.

Materials And Methods: Human colorectal cancer cell lines Caco-2 and HCT-8 were treated with 1 μM nicotine alone or in combination with 1 μM α-BTX in complete or in serum free medium. Cell proliferation and apoptosis were determined by cell count performed with a cell counter and by cytofluorimetric assay respectively. PI3K/Akt and PKC/ERK1/2 pathways, survivin, and P-Bcl2 (Ser70) were investigated by Western blot analysis.

Results: Nicotine induced an increase in cell proliferation and a decrease of apoptosis in Caco-2 and HCT-8 cells. Both cell growth and apoptosis appear to be mediated by α7-nicotinic acetylcholine receptors, since treatment with α-Bungarotoxin inhibited these processes. Nicotine induced a statistically significant increase in the expression of PI3K and in P-Akt/Akt ratio as well as in the expression of PKC, ERK1/2, survivin, and P-Bcl2 (Ser70) in both cell lines.

Conclusions: Nicotine, contained in cigarette smoking, could participate in colon cancer development and progression by stimulating cell proliferation and suppressing physiological apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2011.12.029DOI Listing
November 2012

Antiproliferative and apoptotic effects triggered by Grape Seed Extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines.

Int J Mol Sci 2012 10;13(1):651-64. Epub 2012 Jan 10.

Department of Experimental Medicine, "La Sapienza" University, Viale Regina Elena 324, Rome 00161, Italy; E-Mails: (S.D.); (S.P.); (E.L.).

Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms13010651DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269711PMC
February 2015

A systems biology approach to cancer: fractals, attractors, and nonlinear dynamics.

OMICS 2011 Mar 14;15(3):93-104. Epub 2011 Feb 14.

Department of Experimental Medicine, Sapienza University, Roma, Italy.

Cancer begins to be recognized as a highly complex disease, and advanced knowledge of the carcinogenic process claims to be acquired by means of supragenomic strategies. Experimental data evidence that tumor emerges from disruption of tissue architecture, and it is therefore consequential that the tissue level should be considered the proper level of observation for carcinogenic studies. This paradigm shift imposes to move from a reductionistic to a systems biology approach. Indeed, cell phenotypes are emergent modes arising through collective nonlinear interactions among different cellular and microenvironmental components, generally described by a phase space diagram, where stable states (attractors) are embedded into a landscape model. Within this framework cell states and cell transitions are generally conceived as mainly specified by the gene-regulatory network. However, the system's dynamics cannot be reduced to only the integrated functioning of the genome-proteome network, and the cell-stroma interacting system must be taken into consideration in order to give a more reliable picture. As cell form represents the spatial geometric configuration shaped by an integrated set of cellular and environmental cues participating in biological functions control, it is conceivable that fractal-shape parameters could be considered as "omics" descriptors of the cell-stroma system. Within this framework it seems that function follows form, and not the other way around.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/omi.2010.0091DOI Listing
March 2011

Melatonin and vitamin D3 synergistically down-regulate Akt and MDM2 leading to TGFβ-1-dependent growth inhibition of breast cancer cells.

J Pineal Res 2011 Mar 22;50(2):150-8. Epub 2010 Nov 22.

Department of Experimental Medicine, University La Sapienza, Roma, Italy.

Melatonin and vitamin D3 inhibit breast cancer cell growth and induce apoptosis, but they have never been combined as a breast cancer treatment. Therefore, we investigated whether their association could lead to an enhanced anticancer activity. In MCF-7 breast cancer cells, melatonin together with vitamin D3, induced a synergistic proliferative inhibition, with an almost complete cell growth arrest at 144 hr. Cell growth blockade is associated to an activation of the TGFβ-1 pathway, leading to increased TGFβ-1, Smad4 and phosphorylated-Smad3 levels. Concomitantly, melatonin and D3, alone or in combination, caused a significant reduction in Akt phosphorylation and MDM2 values, with a consequent increase of p53/MDM2 ratio. These effects were completely suppressed by adding a monoclonal anti-TGFβ-1 antibody to the culture medium. Taken together, these results indicate that cytostatic effects triggered by melatonin and D3 are likely related to a complex TGFβ-1-dependent mechanism, involving down-regulation of both MDM2 and Akt-phosphorylation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-079X.2010.00824.xDOI Listing
March 2011

Apoptosis-inducing factor and caspase-dependent apoptotic pathways triggered by different grape seed extracts on human colon cancer cell line Caco-2.

Br J Nutr 2010 Sep 14;104(6):824-32. Epub 2010 Jun 14.

Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, Roma, Italy.

Consumption of grape seed extract (GSE) is widely marketed as a dietary supplement and is considered safe for human health. Nevertheless, the analytical composition of GSE from different grape cultivars, growing in special agronomic constraints, differs greatly in flavan-3-ols content. The major concern with GSE studies is a lack of availability of uniformly standardised preparations, which raises an important question whether different GSE samples have comparable activity and trigger the same mechanisms of action on a given biological system. Therefore, it is tempting to speculate that GSE, obtained from different cultivars, could exert differentiated anticancer effects. The focus of the present study is to determine the selective biological efficacy of GSE obtained from three different sources on the human colon cancer cell line Caco-2. Irrespective of its source, high doses of GSE induced a significant inhibition on Caco-2 cell growth. Moreover, apoptosis was enhanced through both caspase-dependent and caspase-independent mechanisms, leading to an early apoptosis-inducing factor release and, further, to a dramatic increase in caspase 7 and 3 activity. However, a significant difference in apoptotic rates induced by the three grape sources clearly emerged when treating cancer cells with low and intermediate GSE concentrations (25 and 50 microg/ml).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114510001522DOI Listing
September 2010

Metabolism and cell shape in cancer: a fractal analysis.

Int J Biochem Cell Biol 2011 Jul 10;43(7):1052-8. Epub 2010 May 10.

ASI, Italian Space Agency, Roma, Italy.

Fractal analysis in cancer cell investigation provided meaningful insights into the relationship between morphology and phenotype. Some reports demonstrated that changes in cell shape precede and trigger dramatic modifications in both gene expression and enzymatic function. Nonetheless, metabolomic pattern in cells undergoing shape changes have been not still reported. Our study was aimed to investigate if modifications in cancer cell morphology are associated to relevant transition in tumour metabolome, analyzed by nuclear magnetic resonance spectroscopy and principal component analysis. MCF-7 and MDA-MB-231 breast cancer cells, exposed to an experimental morphogenetic field, undergo a dramatic change in their membrane profiles. Both cell lines recover a more rounded shape, loosing spindle and invasive protrusions, acquiring a quite "normal" morphology. This result, quantified by fractal analysis, shows that normalized bending energy (a global shape characterization expressing the amount of energy needed to transform a specific shape into its lowest energy state) decreases after 48 h. Later on, a significant shift from a high to a low glycolytic phenotype was observed on both cell lines: glucose flux begins to drop off at 48 h, leading to reduced lactate accumulation, and fatty acids and citrate synthesis slow-down after 72 h. Moreover, de novo lipidogenesis is inhibited and nucleotide synthesis is reduced, as indicated by the positive correlation between glucose and formate. In conclusion, these data indicate that the reorganization of cell membrane architecture, induced by environmental cues, is followed by a relevant transition of the tumour metabolome, suggesting cells undergo a dramatic phenotypic reversion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2010.05.002DOI Listing
July 2011