Publications by authors named "Sara Marchi"

16 Publications

  • Page 1 of 1

Stability of Outer Membrane Vesicles-Based Vaccines, Identifying the Most Appropriate Methods to Detect Changes in Vaccine Potency.

Vaccines (Basel) 2021 Mar 6;9(3). Epub 2021 Mar 6.

GSK Vaccines Institute for Global Health (GVGH) S.r.l., Via Fiorentina 1, 53100 Siena, Italy.

Ensuring the stability of vaccines is crucial to successfully performing global immunization programs. Outer Membrane Vesicles (OMV) are receiving great attention as vaccine platforms. OMV are complex molecules and few data have been collected so far on their stability. OMV produced by bacteria, genetically modified to increase their spontaneous release, simplifying their production, are also known as Generalized Modules for Membrane Antigens (GMMA). We have performed accelerated stability studies on GMMA from different pathogens and verified the ability of physico-chemical and immunological methods to detect possible changes. High-temperature conditions (100 °C for 40 min) did not affect GMMA stability and immunogenicity in mice, in contrast to the effect of milder temperatures for a longer period of time (37 °C or 50 °C for 4 weeks). We identified critical quality attributes to monitor during stability assessment that could impact vaccine efficacy. In particular, specific recognition of antigens by monoclonal antibodies through competitive ELISA assays may replace in vivo tests for the potency assessment of GMMA-based vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/vaccines9030229DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998687PMC
March 2021

NHBA is processed by kallikrein from human saliva.

PLoS One 2019 1;14(8):e0203234. Epub 2019 Aug 1.

GSK, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein of Neisseria meningitidis and a component of the Bexsero vaccine. NHBA is characterized by the presence of a highly conserved Arg-rich region involved in binding to heparin and heparan sulphate proteoglycans present on the surface of host epithelial cells, suggesting a possible role of NHBA during N. meningitidis colonization. NHBA has been shown to be cleaved by the meningococcal protease NalP and by human lactoferrin (hLF), a host protease presents in different body fluids (saliva, breast milk and serum). Cleavage occurs upstream or downstream the Arg-rich region. Since the human nasopharynx is the only known reservoir of infection, we further investigated the susceptibility of NHBA to human proteases present in the saliva to assess whether proteolytic cleavage could happen during the initial steps of colonization. Here we show that human saliva proteolytically cleaves NHBA, and identified human kallikrein 1 (hK1), a serine protease, as responsible for this cleavage. Kallikrein-related peptidases (KLKs) have a distinct domain structure and exist as a family of 15 genes which are differentially expressed in many tissues and in the central nervous system. They are present in plasma, lymph, urine, saliva, pancreatic juices, and other body fluids where they catalyze the proteolysis of several human proteins. Here we report the characterization of NHBA cleavage by the tissue kallikrein, expressed in saliva and the identification of the cleavage site on NHBA both, as recombinant protein or as native protein, when expressed on live bacteria. Overall, these findings provide new insights on NHBA as target of host proteases, highlights thepotential role of NHBA in the Neisseria meningitidis nasopharyngeal colonization, and of kallikrein as a defensive agent against meningococcal infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203234PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675046PMC
March 2020

Retrospective Identification of a Broad IgG Repertoire Differentiating Patients With Skin and Soft Tissue Infections From Controls.

Front Immunol 2019 7;10:114. Epub 2019 Feb 7.

Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Although the relevance of humoral immunity for protection against skin and soft tissue infections (SSTIs) has been suggested by several animal and human studies, the question of which human antibodies may be protective has so far impeded the development of a safe and effective vaccine. Because most adults have developed certain anti- antibodies due to colonization or infection, we hypothesized that the titers of antibodies to in uninfected controls would differ from those in infected patients and would also differ in infected patients from the time of acute infection to a 40-day convalescent serum. To test these hypotheses, we measured human antibody levels against a panel of 134 unique antigens comprising the surfome and secretome in subjects with active culture-confirmed SSTIs (cases) and in controls with no infection, using a novel protein microarray. Most SSTI patients ( = 60) and controls ( = 142) had antibodies to many of the tested antigens. Univariate analysis showed statistically weak differences in the IgG levels to some antigens in the SSTI patient (case) sera compared with controls. Antibody levels to most tested antigens did not increase comparing acute with 40-day serum. Multiple logistic regression identified a rich subset of antigens that, by their antibody levels, together correctly differentiated all cases from all controls. Antibodies directed against antigens were present both in patients with SSTIs and in uninfected control patients. We found that SSTI patients and controls could be distinguished only based on differences in antibody levels to many staphylococcal surface and secreted antigens. Our results demonstrate that in the studied population, the levels of anti- antibodies appear largely fixed, suggesting that there may be some level of unresponsiveness to natural infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.00114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375365PMC
January 2020

Genome-Based Approach Delivers Vaccine Candidates Against .

Front Immunol 2018 9;9:3021. Epub 2019 Jan 9.

Infection and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.

High incidence, severity and increasing antibiotic resistance characterize infections, highlighting the need for new therapeutic options. Vaccination strategies to prevent or limit infections represent a rational approach to positively impact the clinical outcome of risk patients; nevertheless this bacterium remains a challenging vaccine target. To identify novel vaccine candidates, we started from the genome sequence analysis of the reference strain PAO1 exploring the reverse vaccinology approach integrated with additional bioinformatic tools. The bioinformatic approaches resulted in the selection of 52 potential antigens. These vaccine candidates were conserved in genomes from different origin and among strains isolated longitudinally from cystic fibrosis patients. To assess the immune-protection of single or antigens combination against infection, a vaccination protocol was established in murine model of acute respiratory infection. Combinations of selected candidates, rather than single antigens, effectively controlled infection in the model of murine pneumonia. Five combinations were capable of significantly increase survival rate among challenged mice and all included PA5340, a hypothetical protein exclusively present in . PA5340 combined with PA3526-MotY gave the maximum protection. Both proteins were surface exposed by immunofluorescence and triggered a specific immune response. Combination of these two protein antigens could represent a potential vaccine to prevent infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.03021DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334337PMC
October 2019

Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase.

PLoS One 2018 26;13(3):e0194662. Epub 2018 Mar 26.

GSK, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194662PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868813PMC
July 2018

Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells.

PLoS One 2016 25;11(10):e0162878. Epub 2016 Oct 25.

GSK Vaccines, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162878PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079597PMC
June 2017

Development of a serological assay to predict antibody bactericidal activity against non-typeable Haemophilus influenzae.

BMC Microbiol 2015 Apr 18;15:87. Epub 2015 Apr 18.

Novartis Vaccines & Diagnostics s.r.l. (a GSK company), Via Fiorentina 1, 53100, Siena, Italy.

Background: Non-typeable Haemophilus influenzae (NTHi) is a Gram negative microorganism residing in the human nasopharyngeal mucosa and occasionally causing infections of both middle ear and lower respiratory airways. A broadly protective vaccine against NTHi has been a long-unmet medical need, as the high genetic variability of this bacterium has posed great challenges.

Results: In this study, we developed a robust serum bactericidal assay (SBA) to optimize the selection of protective antigens against NTHi. SBA takes advantage of the complement-mediated lysis of bacterial cells and is a key in vitro method for measuring the functional activity of antibodies. As a proof of concept, we assessed the bactericidal activity of antibodies directed against antigens known to elicit a protective response, including protein D used as carrier protein in the Synflorix pneumococcal polysaccharide conjugate vaccine. Prior to SBA screening, the accessibility of antigens to antibodies and the capacity of the latter to induce C3 complement deposition was verified by flow cytometry. Using baby rabbit serum as a source of complement, the proposed assay not only confirmed the bactericidal activity of the antibodies against the selected vaccine candidates, but also showed a significant reproducibility.

Conclusions: Considering the rapidity and cost-effectiveness of this novel SBA protocol, we conclude that it is likely to become an important tool to prove the capability of antibodies directed against recombinant antigens to induce NTHi in vitro killing and to both select new protective vaccine candidates, and predict vaccine efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12866-015-0420-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409741PMC
April 2015

Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus.

Proc Natl Acad Sci U S A 2015 Mar 9;112(12):3680-5. Epub 2015 Mar 9.

Novartis Vaccines Research Center, 53100 Siena, Italy;

Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1424924112DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378396PMC
March 2015

Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody.

Proc Natl Acad Sci U S A 2014 Dec 17;111(48):17128-33. Epub 2014 Nov 17.

Novartis Vaccines, 53100 Siena, Italy; and.

Serogroup B Neisseria meningitidis (MenB) is a major cause of severe sepsis and invasive meningococcal disease, which is associated with 5-15% mortality and devastating long-term sequelae. Neisserial adhesin A (NadA), a trimeric autotransporter adhesin (TAA) that acts in adhesion to and invasion of host epithelial cells, is one of the three antigens discovered by genome mining that are part of the MenB vaccine that recently was approved by the European Medicines Agency. Here we present the crystal structure of NadA variant 5 at 2 Å resolution and transmission electron microscopy data for NadA variant 3 that is present in the vaccine. The two variants show similar overall topology with a novel TAA fold predominantly composed of trimeric coiled-coils with three protruding wing-like structures that create an unusual N-terminal head domain. Detailed mapping of the binding site of a bactericidal antibody by hydrogen/deuterium exchange MS shows that a protective conformational epitope is located in the head of NadA. These results provide information that is important for elucidating the biological function and vaccine efficacy of NadA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1419686111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260552PMC
December 2014

Protective activity of the CnaBE3 domain conserved among Staphylococcus aureus Sdr proteins.

PLoS One 2013 17;8(9):e74718. Epub 2013 Sep 17.

Novartis Vaccines and Diagnostics, Siena, Italy.

Staphylococcus aureus is an opportunistic pathogen, commensal of the human skin and nares, but also responsible for invasive nosocomial as well as community acquired infections. Staphylococcus aureus adheres to the host tissues by means of surface adhesins, such as SdrC, SdrD, and SdrE proteins. The Sdr family of proteins together with a functional A domain, contain respectively two, three or five repeated sequences called B motifs which comprise the CnaB domains. SdrD and SdrE proteins were reported to be protective in animal models against invasive diseases or lethal challenge with human clinical S. aureus isolates. In this study we identified a 126 amino acid sequence containing a CnaB domain, conserved among the three Sdr proteins. The three fragments defined here as CnaBC2, D5 and E3 domains even though belonging to phylogenetically distinct strains, displayed high sequence similarity. Based on the sequence conservation data, we selected the CnaBE3 domain for further analysis and characterization. Polyclonal antibodies raised against the recombinant CnaBE3 domain recognized SdrE, SdrC and SdrD proteins of different S. aureus lineages. Moreover, we demonstrated that the CnaBE3 domain was expressed in vivo during S. aureus infections, and that immunization of this domain alone significantly reduces the bacterial load in mice challenged with S. aureus. Furthermore, we show that the reduction of bacteria by CnaBE3 vaccination is due to functional antibodies. Finally, we demonstrated that the region of the SdrE protein containing the CnaBE3 domain was resistant to trypsin digestion, a characteristic often associated with the presence of an isopeptide bond.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074718PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775735PMC
June 2014

Mining the bacterial unknown proteome: identification and characterization of a novel family of highly conserved protective antigens in Staphylococcus aureus.

Biochem J 2013 Nov;455(3):273-84

*Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy.

In the human pathogen Staphylococcus aureus, there exists an enormous diversity of proteins containing DUFs (domains of unknown function). In the present study, we characterized the family of conserved staphylococcal antigens (Csa) classified as DUF576 and taxonomically restricted to Staphylococci. The 18 Csa paralogues in S. aureus Newman are highly similar at the sequence level, yet were found to be expressed in multiple cellular locations. Extracellular Csa1A was shown to be post-translationally processed and released. Molecular interaction studies revealed that Csa1A interacts with other Csa paralogues, suggesting that these proteins are involved in the same cellular process. The structures of Csa1A and Csa1B were determined by X-ray crystallography, unveiling a peculiar structure with limited structural similarity to other known proteins. Our results provide the first detailed biological characterization of this family and confirm the uniqueness of this family also at the structural level. We also provide evidence that Csa family members elicit protective immunity in in vivo animal models of staphylococcal infections, indicating a possible important role for these proteins in S. aureus biology and pathogenesis. These findings identify the Csa family as new potential vaccine candidates, and underline the importance of mining the bacterial unknown proteome to identify new targets for preventive vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20130540DOI Listing
November 2013

Protective efficacy induced by recombinant Clostridium difficile toxin fragments.

Infect Immun 2013 Aug 28;81(8):2851-60. Epub 2013 May 28.

Novartis Vaccines and Diagnostics SRL, Siena, Italy.

Clostridium difficile is a spore-forming bacterium that can reside in animals and humans. C. difficile infection causes a variety of clinical symptoms, ranging from diarrhea to fulminant colitis. Disease is mediated by TcdA and TcdB, two large enterotoxins released by C. difficile during colonization of the gut. In this study, we evaluated the ability of recombinant toxin fragments to induce neutralizing antibodies in mice. The protective efficacies of the most promising candidates were then evaluated in a hamster model of disease. While limited protection was observed with some combinations, coadministration of a cell binding domain fragment of TcdA (TcdA-B1) and the glucosyltransferase moiety of TcdB (TcdB-GT) induced systemic IgGs which neutralized both toxins and protected vaccinated animals from death following challenge with two strains of C. difficile. Further characterization revealed that despite high concentrations of toxin in the gut lumens of vaccinated animals during the acute phase of the disease, pathological damage was minimized. Assessment of gut contents revealed the presence of TcdA and TcdB antibodies, suggesting that systemic vaccination with this pair of recombinant polypeptides can limit the disease caused by toxin production during C. difficile infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.01341-12DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719595PMC
August 2013

CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen.

Cell Microbiol 2013 Oct 11;15(10):1674-87. Epub 2013 Apr 11.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.

Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudomembranous colitis. While the role of toxins in pathogenesis has been extensively described, the contribution of surface determinants to intestinal colonization is still poorly understood. We focused our study on a novel member of the MSCRAMM family, named CbpA (Collagen binding protein A), for its adhesive properties towards collagen. We demonstrate that CbpA, which carries an LPXTG-like cell wall anchoring domain, is expressed on the bacterial surface of C. difficile and that the recombinant protein binds at high affinity to collagens I and V (apparent Kd in the order of 10(-9 ) M). These findings were validated by confocal microscopy studies showing the colocalization of the protein with type I and V collagen fibres produced by human fibroblasts and mouse intestinal tissues. However, the collagen binding activity of the wild-type C. difficile 630 strain was indistinguishable to the cbpA knock-out strain. To overcome this apparent clostridial adherence redundancy, we engineered a Lactococcus lactis strain for the heterologous expression of CbpA. When exposed on the surface of L. lactis, CbpA significantly enhances the ability of the bacterium to interact with collagen and to adhere to ECM-producing cells. The binding activity of L. lactis-CbpA strain was prevented by an antiserum raised against CbpA, demonstrating the specificity of the interaction. These results suggest that CbpA is a newsurface-exposed adhesin contributing to the C. difficile interaction with the host.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cmi.12139DOI Listing
October 2013

Antigen identification starting from the genome: a "Reverse Vaccinology" approach applied to MenB.

Methods Mol Biol 2012 ;799:361-403

Novartis Vaccines and Diagnostics, Siena, Italy.

Most of the vaccines available today, albeit very effective, have been developed using traditional "old-style" methodologies. Technologies developed in recent years have opened up new perspectives in the field of vaccinology and novel strategies are now being used to design improved or new vaccines against infections for which preventive measures do not exist. The Reverse Vaccinology (RV) approach is one of the most powerful examples of biotechnology applied to the field of vaccinology for identifying new protein-based vaccines. RV combines the availability of genomic data, the analyzing capabilities of new bioinformatic tools, and the application of high throughput expression and purification systems combined with serological screening assays for a coordinated screening process of the entire genomic repertoire of bacterial, viral, or parasitic pathogens. The application of RV to Neisseria meningitidis serogroup B represents the first success of this novel approach. In this chapter, we describe how this revolutionary approach can be easily applied to any pathogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-346-2_21DOI Listing
February 2012

Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.

Infect Immun 2011 Feb 13;79(2):970-81. Epub 2010 Dec 13.

Molecular Genetics Unit, Novartis Vaccines, Via Fiorentina, 1, 53100 Siena, Italy.

Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.00891-10DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028832PMC
February 2011

Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli.

Proc Natl Acad Sci U S A 2010 May 3;107(20):9072-7. Epub 2010 May 3.

Novartis Vaccines and Diagnostics, 53100 Siena, Italy.

Extraintestinal pathogenic Escherichia coli (ExPEC) are a common cause of disease in both mammals and birds. A vaccine to prevent such infections would be desirable given the increasing antibiotic resistance of these bacteria. We have determined the genome sequence of ExPEC IHE3034 (ST95) isolated from a case of neonatal meningitis and compared this to available genome sequences of other ExPEC strains and a few nonpathogenic E. coli. We found 19 genomic islands present in the genome of IHE3034, which are absent in the nonpathogenic E. coli isolates. By using subtractive reverse vaccinology we identified 230 antigens present in ExPEC but absent (or present with low similarity) in nonpathogenic strains. Nine antigens were protective in a mouse challenge model. Some of them were also present in other pathogenic non-ExPEC strains, suggesting that a broadly protective E. coli vaccine may be possible. The gene encoding the most protective antigen was detected in most of the E. coli isolates, highly conserved in sequence and found to be exported by a type II secretion system which seems to be nonfunctional in nonpathogenic strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0915077107DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2889118PMC
May 2010