Publications by authors named "Sangeeta Subramanian"

3 Publications

  • Page 1 of 1

Zinc has insulin-mimetic properties which enhance spinal fusion in a rat model.

Spine J 2016 06 2;16(6):777-83. Epub 2016 Feb 2.

Department of Orthopaedics, Rutgers University, New Jersey Medical School, 90 Bergen St, Suite 7300, Newark, NJ 07101, USA.

Background Context: Previous studies have found that insulin or insulin-like growth factor treatment can stimulate fracture healing in diabetic and normal animal models, and increase fusion rates in a rat spinal fusion model. Insulin-mimetic agents, such as zinc, have demonstrated antidiabetic effects in animal and human studies, and these agents that mimic the effects of insulin could produce the same beneficial effects on bone regeneration and spinal fusion.

Purpose: The purpose of this study was to analyze the effects of locally applied zinc on spinal fusion in a rat model.

Study Design/setting: Institutional Animal Care and Use Committee-approved animal study using Sprague-Dawley rats was used as the study design.

Methods: Thirty Sprague-Dawley rats (450-500 g) underwent L4-L5 posterolateral lumbar fusion (PLF). After decortication and application of approximately 0.3 g of autograft per side, one of three pellets were added to each site: high-dose zinc calcium sulfate (ZnCaSO4), low-dose ZnCaSO4 (half of the high dose), or a control palmitic acid pellet (no Zn dose). Systemic blood glucose levels were measured 24 hours postoperatively. Rats were sacrificed after 8weeks and the PLFs analyzed qualitatively by manual palpation and radiograph review, and quantitatively by micro-computed tomography (CT) analysis of bone volume and trabecular thickness. Statistical analyses with p-values set at .05 were accomplished with analysis of variance, followed by posthoc tests for quantitative data, or Mann-Whitney rank tests for qualitative assessments.

Results: Compared with controls, the low-dose zinc group demonstrated a significantly higher manual palpation grade (p=.011), radiographic score (p=.045), and bone formation on micro-CT (172.9 mm(3) vs. 126.7 mm(3) for controls) (p<.01). The high-dose zinc also demonstrated a significantly higher radiographic score (p=.017) and bone formation on micro-CT (172.7 mm(3) vs. 126.7 mm(3)) (p<.01) versus controls, and was trending toward higher manual palpation scores (p=.058).

Conclusions: This study demonstrates the potential benefit of a locally applied insulin-mimetic agent, such as zinc, in a rat lumbar fusion model. Previous studies have demonstrated the benefits of local insulin application in the same model, and it appears that zinc has similar effects.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2016

Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2.

Tissue Eng Part A 2015 Jul 29;21(13-14):2013-24. Epub 2015 Apr 29.

1 Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey , Newark, New Jersey.

Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2015

Fracture healing and lipid mediators.

Bonekey Rep 2014 2;3:517. Epub 2014 Apr 2.

Department of Biochemistry & Molecular Biology, New Jersey Medical School and Graduate School of Biomedical Sciences, Rutgers, the State University of New Jersey , Newark, NJ, USA.

Lipid mediators regulate bone regeneration during fracture healing. Prostaglandins and leukotrienes are well-known lipid mediators that regulate inflammation and are synthesized from the Ω-6 fatty acid, arachidonic acid. Cyclooxygenase (COX-1 or COX-2) and 5-lipoxygenase (5-LO) catalyze the initial enzymatic steps in the synthesis of prostaglandins and leukotrienes, respectively. Inhibition or genetic ablation of COX-2 activity impairs fracture healing in animal models. Genetic ablation of COX-1 does not affect the fracture callus strength in mice, suggesting that COX-2 activity is primarily responsible for regulating fracture healing. Inhibition of cyclooxygenase activity with nonsteroidal anti-inflammatory drugs (NSAIDs) is performed clinically to reduce heterotopic ossification, although clinical evidence that NSAID treatment impairs fracture healing remains controversial. In contrast, inhibition or genetic ablation of 5-LO activity accelerates fracture healing in animal models. Even though prostaglandins and leukotrienes regulate inflammation, loss of COX-2 or 5-LO activity appears to primarily affect chondrogenesis during fracture healing. Prostaglandin or prostaglandin analog treatment, prostaglandin-specific synthase inhibition and prostaglandin or leukotriene receptor antagonism also affect callus chondrogenesis. Unlike the Ω-6-derived lipid mediators, lipid mediators derived from Ω-3 fatty acids, such as resolvin E1 (RvE1), have anti-inflammatory activity. In vivo, RvE1 can inhibit osteoclastogenesis and limit bone resorption. Although Ω-6 and Ω-3 lipid mediators have clear-cut effects on inflammation, the role of these lipid mediators in bone regeneration is more complex, with apparent effects on callus chondrogenesis and bone remodeling.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
June 2014