Publications by authors named "Sandra Marisa Mathioni"

3 Publications

  • Page 1 of 1

Sensitivity assessment and SDHC-I86F mutation frequency of Phakopsora pachyrhizi populations to benzovindiflupyr and fluxapyroxad fungicides from 2015 to 2019 in Brazil.

Pest Manag Sci 2021 May 5. Epub 2021 May 5.

Department of Phytopathology, Londrina State University, Londrina, Paraná, Brazil.

Background: Fungicides of the succinate dehydrogenase inhibitors (SDHIs) group have been used in soybean to control Asian soybean rust (ASR) caused by Phakopsora pachyrhizi. Fungal populations with less sensitivity to SDHI fungicides have been reported since 2015.

Results: In this study, fungal sensitivity to benzovindiflupyr (BZV) and fluxapyroxad (FXD) was assessed using a total of 770 P. pachyrhizi populations sampled over four soybean growing seasons. Cross-resistance, intrinsic activity, and frequency of SDHC-I86F mutation were also analyzed. The average effective concentration to inhibit 50% (EC ) and SDHC-I86F frequency increased over the 2015/2016, 2016/2017, 2017/2018 and 2018/2019 soybean-seasons. Fourteen P. pachyrhizi populations had the EC value above 10 mg L for both carboxamides. No difference was found in intrinsic active to BZV and FXD fungicides for sensitive P. pachyrhizi populations. For P. pachyrhizi classified as less sensitive BZV showed the highest fungitoxicity effect. High frequency of the C-I86F mutation was observed in samples collected in volunteer soybean plants. The maximum frequency of SDHC-I86F mutation in the population was 50% and resulting in ASR populations with low sensitivity to SDHIs. A low correlation between bioassay and SDHC-I86F mutation was observed possible due to the dikaryotic nature of rust fungi or other mutations in the other succinate dehydrogenase subunits.

Conclusion: The present work provides an overview of a large sampling size of P. pachyrhizi populations and their performance over the four crop seasons. The high frequency of SDHC-I86F mutation and low sensitivity to SDHIs are widely distributed in the main soybean growing regions in Brazil and present in volunteer plants in the soybean-free period. Further detailed studies are needed to identify novel point mutations affecting the effectiveness of SDHIs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6466DOI Listing
May 2021

Genome sequencing and transcript analysis of Hemileia vastatrix reveal expression dynamics of candidate effectors dependent on host compatibility.

PLoS One 2019 18;14(4):e0215598. Epub 2019 Apr 18.

Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.

Coffee leaf rust caused by the fungus Hemileia vastatrix is one of the most important leaf diseases of coffee plantations worldwide. Current knowledge of the H. vastatrix genome is limited and only a small fraction of the total fungal secretome has been identified. In order to obtain a more comprehensive understanding of its secretome, we aimed to sequence and assemble the entire H. vastatrix genome using two next-generation sequencing platforms and a hybrid assembly strategy. This resulted in a 547 Mb genome of H. vastatrix race XXXIII (Hv33), with 13,364 predicted genes that encode 13,034 putative proteins with transcriptomic support. Based on this proteome, 615 proteins contain putative secretion peptides, and lack transmembrane domains. From this putative secretome, 111 proteins were identified as candidate effectors (EHv33) unique to H. vastatrix, and a subset consisting of 17 EHv33 genes was selected for a temporal gene expression analysis during infection. Five genes were significantly induced early during an incompatible interaction, indicating their potential role as pre-haustorial effectors possibly recognized by the resistant coffee genotype. Another nine genes were significantly induced after haustorium formation in the compatible interaction. Overall, we suggest that this fungus is able to selectively mount its survival strategy with effectors that depend on the host genotype involved in the infection process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215598PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472787PMC
January 2020

Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.

PLoS Genet 2011 May 12;7(5):e1002064. Epub 2011 May 12.

Universidade Federal do Paraná, Curitiba, Brazil.

The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1002064DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093359PMC
May 2011