Publications by authors named "Sandra J Campbell"

28 Publications

  • Page 1 of 1

Selective blood-brain barrier permeabilisation of brain metastases by a type-1 receptor selective tumour necrosis factor mutein.

Neuro Oncol 2021 Jul 23. Epub 2021 Jul 23.

Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.

Background: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumour development and heterogeneously permeable at later stages. Intravenous injection of tumour necrosis factor (TNF) selectively induces BBB permeabilisation at sites of brain micrometastasis, in a TNF type-1 receptor (TNFR1) dependent manner. Here, to enable clinical translation, we have developed a TNFR1-selective agonist variant of human TNF that induces BBB permeabilisation, whilst minimising potential toxicity.

Methods: A library of human TNF muteins (mutTNF) were generated and assessed for binding specificity to mouse and human TNFR1/2, endothelial permeabilising activity in vitro, potential immunogenicity and circulatory half-life. The permeabilising ability of the most promising variant was assessed in vivo in a model of brain metastasis.

Results: The primary mutTNF variant showed similar affinity for human TNFR1 than wild-type human TNF, similar affinity for mouse TNFR1 as wild-type mouse TNF, undetectable binding to human/mouse TNFR2, low potential immunogenicity and permeabilisation of an endothelial monolayer. Circulatory half-life was similar to mouse/human TNF and BBB permeabilisation was induced selectively at sites of micrometastases in vivo, with a time window of ≥24h and enabling delivery of agents within a therapeutically-relevant range (0.5-150kDa), including the clinically approved therapy, trastuzumab.

Conclusions: We have developed a clinically-translatable mutTNF that selectively opens the BBB at micrometastatic sites, whilst leaving the rest of the cerebrovasculature intact. This approach will open a window for brain metastasis treatment that currently does not exist.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuonc/noab177DOI Listing
July 2021

The contribution of the acute phase response to the pathogenesis of relapse in chronic-relapsing experimental autoimmune encephalitis models of multiple sclerosis.

J Neuroinflammation 2017 Sep 30;14(1):196. Epub 2017 Sep 30.

Department of Pharmacology, University of Oxford, Oxford, OX1 4QT, UK.

Background: Increased relapse rates in multiple sclerosis (MS) as a consequence of peripheral immune system activation, owing to infection for example, have been widely reported, but the mechanism remains unclear. Acute brain injury models can be exacerbated by augmenting the hepatic acute phase response (APR). Here, we explored the contribution of the hepatic APR to relapse in two rodent models of MS.

Methods: Mice with MOG-CFA-induced chronic relapsing experimental autoimmune encephalitis (CR-EAE) were killed before, during and after the first phase of disease, and the brain and liver chemokine, cytokine and acute phase protein (APP) mRNA expression profile was determined. During remission, the APR was reactivated with an intraperitoneal lipopolysaccharide (LPS) and clinical score was monitored throughout. To explore the downstream mediators, CXCL-1, which is induced as part of the APR, was injected into animals with a focal, cytokine/MOG-induced EAE lesion (fEAE) and the cellularity of the lesions was assessed.

Results: Compared to CFA control, in a rodent CR-EAE model, an hepatic APR preceded clinical signs and central cytokine production in the initial phase of disease. Compared to administration in naïve animals, an LPS challenge during the asymptomatic remission phase of CR-EAE rodents provoked relapse and resulted in the increased and extended expression of specific peripheral hepatic chemokines. CXCL-1 and several other APPs were markedly elevated. A single intravenous administration of the highly induced chemokine, CXCL-1, was found to be sufficient to reactivate the lesions by increasing microglial activation and the recruitment of T cells in fEAE lesions.

Conclusions: The APR plays a contributing role to the pathology seen in models of chronic brain injury and in translating the effects of peripheral immune system stimulation secondary to trauma or infection into central pathology and behavioural signs. Further elucidation of the exact mechanisms in this process will inform development of more effective, selective therapies in MS that, by suppressing the hepatic chemokine response, may prevent relapse.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-017-0969-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622564PMC
September 2017

Covalent assembly of nanoparticles as a peptidase-degradable platform for molecular MRI.

Nat Commun 2017 02 15;8:14254. Epub 2017 Feb 15.

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK.

Ligand-conjugated microparticles of iron oxide (MPIO) have the potential to provide high sensitivity contrast for molecular magnetic resonance imaging (MRI). However, the accumulation and persistence of non-biodegradable micron-sized particles in liver and spleen precludes their clinical use and limits the translational potential of MPIO-based contrast agents. Here we show that ligand-targeted MPIO derived from multiple iron oxide nanoparticles may be coupled covalently through peptide linkers that are designed to be cleaved by intracellular macrophage proteases. The synthesized particles possess potential characteristics for targeted MRI contrast agents, including high relaxivity, unappreciable sedimentation, clearance from circulation and no overt toxicity. Importantly, we demonstrate that these particles are rapidly degraded both in vitro and in vivo, and that the targeted probes can be used for detection of inflammation in vivo using MRI. This approach provides a platform for molecular MRI contrast agents that is potentially more suitable for translation to humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms14254DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316865PMC
February 2017

The effect of B-cell depletion in the Theiler's model of multiple sclerosis.

J Neurol Sci 2015 Dec 8;359(1-2):40-7. Epub 2015 Oct 8.

Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Neurology, University of Medicine and Dentistry-New Jersey Medical School, Newark, NJ, USA.

B cell depletion (BCD) is being considered as a treatment for multiple sclerosis (MS), but there are many uncertainties surrounding the use of this therapy, such as its potential effect in individuals with concurrent viral infections. We sought to discover what effect BCD, induced by an anti-CD20 monoclonal antibody, would have on Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Mice were injected with the anti-CD20 monoclonal antibody 5D2, 14 days before or 14 days after infection with TMEV. Efficacy of depletion of B cells was assessed by flow cytometry of CD19(+) cells. Mouse disability was measured by Rotarod, viral load was measured by real time PCR for TMEV RNA. Binding and neutralizing antibody levels were determined in sera and CSF by ELISA, and in CNS by real time PCR for IgG RNA. Inflammation, microglial activation, axonal damage and demyelination were assessed using immunohistochemistry. 5D2-induced BCD was confirmed by demonstration of nearly absent CD19(+) cells in the blood and lymphoid tissue. Systemic and CNS antibody responses were suppressed during 5D2 treatment. Higher viral loads were detected in 5D2-treated mice than in controls, and the viral levels correlated negatively with IgG production in the brain. Overall, 5D2 caused worsening of the early encephalitis and faster progression of disability, as well as exacerbation of the pathology of TMEV-IDD at the end stage of the disease. These data indicate that BCD in humans might worsen CNS viral infections and might not improve disability accrual in MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2015.10.012DOI Listing
December 2015

Viral pre-challenge increases central nervous system inflammation after intracranial interleukin-1β injection.

J Neuroinflammation 2014 Oct 17;11:178. Epub 2014 Oct 17.

Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.

Introduction: Systemic inflammation has been shown to significantly worsen the outcome of neurological disease. However, after acute injuries to the brain both pre- and post-conditioning with bacterial endotoxin has been shown to reduce leukocyte recruitment to the CNS. Here, we sought to determine whether viral pre-challenge would have an effect on the outcome of acute CNS inflammation that was distinct from endotoxin.

Methods: Animals received a single intracranial microinjection of IL-1β in the presence or absence of a viral pre-challenge 24 hours prior to surgery. Liver and brain tissue were analysed for chemokine expression by qRT-PCR and leukocyte and monocyte infiltration 12 hours, 3 days and 7 days after the IL-1β injection.

Results: Here, a single injection of adenovirus prior to IL-1β injection resulted in adhesion molecule expression, chemokine expression and the recruitment of neutrophils to the injured CNS in significantly higher numbers than in IL-1β injected animals. The distribution and persistence of leukocytes within the CNS was also greater after pre-challenge, with neutrophils being found in both the ipsilateral and contralateral hemispheres. Thus, despite the absence of virus within the CNS, the presence of virus within the periphery was sufficient to exacerbate CNS disease.

Conclusions: These data suggest that the effect of a peripheral inflammatory challenge on the outcome of CNS injury or disease is not generic and will be highly dependent on the nature of the pathogen.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12974-014-0178-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201684PMC
October 2014

Anti-IL-17A treatment reduces clinical score and VCAM-1 expression detected by in vivo magnetic resonance imaging in chronic relapsing EAE ABH mice.

Am J Pathol 2013 Jun 16;182(6):2071-81. Epub 2013 Apr 16.

CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom.

IL-17 is argued to play an important role in the multiple sclerosis-like disease experimental autoimmune encephalitis (EAE). We investigated the therapeutic effects of anti-IL-17A in a chronic relapsing EAE ABH mouse model using conventional scoring, quantitative behavioral outcomes, and a novel vascular cell adhesion molecule 1 (VCAM-1)-targeted magnetic resonance imaging (MRI) contrast agent [anti-VCAM-microparticles of iron oxide (MPIO)] to identify conventionally undetectable neuropathology. Mice were administered prophylactic or treatment regimens of anti-IL-17A or IgG and two injections of anti-VCAM-MPIO before undergoing T2*-weighted three-dimensional and gadolinium-diethylenetriamine pentaacetic acid T1-weighted MRI. Rotarod, inverted screen, and open field motor function tests were performed, conventional clinical scores calculated, and central IL-17A mRNA expression quantified during acute disease, remission, and relapse. Prophylactic anti-IL-17A prevents acute disease and relapse and is associated with reduced clinical and functional severity. Treatment regimens delay relapse, improve functional scores, and are associated with reduced VCAM-MPIO lesions during remission. No significant alteration was detectable in levels of gadolinium-diethylenetriamine pentaacetic acid- or VCAM-MPIO-positive lesions during relapse. Prophylactic and treatment anti-IL-17A were therapeutically effective in chronic relapsing EAE, improving clinical and quantifiable functional outcomes. IL-17A expression seems significant during acute disease but less important chronically. Disease-related immunoneuropathology is more sensitively detected using VCAM-MPIO MRI, which may, therefore, be used to monitor therapy meaningfully.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2013.02.029DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703548PMC
June 2013

VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis.

FASEB J 2011 Dec 9;25(12):4415-22. Epub 2011 Sep 9.

Cancer Research UK/Medical Research Council Gray Institute for Radiation Oncology and Biology, Department of Oncology, Churchill Hospital, Oxford, OX3 7LJ, UK.

Diagnosis of multiple sclerosis (MS) currently requires lesion identification by gadolinium (Gd)-enhanced or T(2)-weighted magnetic resonance imaging (MRI). However, these methods only identify late-stage pathology associated with blood-brain barrier breakdown. There is a growing belief that more widespread, but currently undetectable, pathology is present in the MS brain. We have previously demonstrated that an anti-VCAM-1 antibody conjugated to microparticles of iron oxide (VCAM-MPIO) enables in vivo detection of VCAM-1 by MRI. Here, in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, we have shown that presymptomatic lesions can be quantified using VCAM-MPIO when they are undetectable by Gd-enhancing MRI. Moreover, in symptomatic animals VCAM-MPIO binding was present in all regions showing Gd-DTPA enhancement and also in areas of no Gd-DTPA enhancement, which were confirmed histologically to be regions of leukocyte infiltration. VCAM-MPIO binding correlated significantly with increasing disability. Negligible MPIO-induced contrast was found in either EAE animals injected with an equivalent nontargeted contrast agent (IgG-MPIO) or in control animals injected with the VCAM-MPIO. These findings describe a highly sensitive molecular imaging tool that may enable detection of currently invisible pathology in MS, thus accelerating diagnosis, guiding treatment, and enabling quantitative disease assessment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.11-183772DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394669PMC
December 2011

Sickness behaviour is induced by a peripheral CXC-chemokine also expressed in multiple sclerosis and EAE.

Brain Behav Immun 2010 Jul 4;24(5):738-46. Epub 2010 Feb 4.

Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK.

Non-CNS chemokine production may contribute to previously unrecognised components of Multiple Sclerosis (MS) pathology. Here we show that IL-8, a neutrophil chemoattractant, is significantly increased in serum from individuals with MS, and that the rodent homolog of IL-8 (CXCL1) is expressed in the liver in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. The hepatic expression of CXCL1 in EAE is accompanied by neutrophil recruitment to the liver, and we show that this recruitment is a feature of post mortem liver tissue from MS patients, which is a previously unrecognised phenomenon. We speculated that the presence of peripheral CXC-chemokine expression might contribute to the sickness behaviours associated with MS, which are a significant contributor to morbidity. Peripheral, but not central, administration of CXCL1 to Wistar rats inhibited spontaneous activity in the open field and burrowing behaviour in a dose-dependent manner (5-45 microg). The expression of CXCL1 by the liver and the recruitment of neutrophils can be modelled by the intracerebral injection of IL-1beta. Here, we found that interferon-beta (IFN-beta) pretreatment significantly inhibited hepatic CXCL1 production and neutrophil recruitment to the liver induced by the microinjection of IL-1beta into the brain. Thus while the mechanism by which IFN-beta therapy suppresses disease in MS remains unclear, the data presented here suggests that the inhibition of hepatic chemokine synthesis may be a contributing factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2010.01.011DOI Listing
July 2010

Comparison of MRI signatures in pattern I and II multiple sclerosis models.

NMR Biomed 2009 Dec;22(10):1014-24

Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.

The majority of individuals with multiple sclerosis (MS) exhibit T-cell- and macrophage-dominated lesions (patterns I and II; as opposed to III and IV). These lesions, in turn, may be distinguished on the basis of whether or not there are immunoglobulin and complement depositions at the sites of active myelin destruction; such depositions are found exclusively in pattern II lesions. The main aim of this study was to determine whether pattern I and pattern II MS lesions exhibit distinct MRI signatures. We have used a recently described focal MOG-induced EAE model of the rat brain, which recapitulates many of the hallmarks of pattern II MS; we compared this with our previous work in a delayed type hypersensitivity model of a pattern I type lesion in the rat brain. Demyelinating lesions with extensive inflammation were generated, in which the T2-weighted signal was increased. Magnetisation transfer ratio (MTR) maps revealed loss and subsequent incomplete recovery of the structure of the corpus callosum, together with changes in tissue water diffusion and an associated increase in ventricle size. Notably, the MTR changes preceeded histological demyelination and may report on the processes leading to demyelination, rather than demyelination per se. Immunohistochemically, these MRI-detectable signal changes correlated with both inflammatory cell infiltration and later loss of myelin. Breakdown of the blood-brain barrier and an increase in the regional cerebral blood volume were also evident in and around the lesion site at the early stage of the disease. Interestingly, however, the MRI signal changes in this pattern II type MS lesion were remarkably consistent with those previously observed in a pattern I lesion. These findings suggest that the observed signal changes reflect the convergent histopathology of the two models rather than the underlying mechanisms of the disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/nbm.1404DOI Listing
December 2009

Systemic inflammatory response reactivates immune-mediated lesions in rat brain.

J Neurosci 2009 Apr;29(15):4820-8

Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.

The potential association between microbial infection and reactivation of a multiple sclerosis (MS) lesion is an important issue that remains unresolved, primarily because of the absence of suitable animal models and imaging techniques. Here, we have evaluated this question in an empirical manner using immunohistochemistry and magnetic resonance imaging (MRI), before and after the induction of a systemic inflammatory response in two distinct models of MS. In a pattern-II-type focal myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis model, systemic endotoxin injection caused an increase in regional cerebral blood volume (rCBV) around the lesion site after 6 h, together with a reduction in the magnetization transfer ratio of the lesioned corpus callosum. These changes were followed by an increase in the diffusion of tissue water within the lesion 24 h after endotoxin challenge and new leukocyte recruitment as revealed both immunohistochemically and by MRI tracking of ultrasmall superparamagnetic iron oxide-labeled macrophages. Importantly, we detected in vivo expression of E- and P-selectin in quiescent lesions by MRI-detectable glyconanoparticles conjugated to sialyl Lewis(X). This finding may explain, at least in part, the ability of quiescent MS lesions to rapidly reinitiate the cell recruitment processes. In a pattern-I-type delayed-type hypersensitivity response model, a similar effect of endotoxin challenge on rCBV was observed, together with delayed breakdown of the blood-brain barrier, showing that systemic infection can alter the pathogenesis of MS-like lesions regardless of lesion etiology. These findings will have important implications for the management and monitoring of individuals with MS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/JNEUROSCI.0406-09.2009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665347PMC
April 2009

Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease.

Proc Natl Acad Sci U S A 2009 Jan 23;106(1):18-23. Epub 2008 Dec 23.

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.

Initial recruitment of leukocytes in inflammation associated with diseases such as multiple sclerosis (MS), ischemic stroke, and HIV-related dementia, takes place across intact, but activated brain endothelium. It is therefore undetectable to symptom-based diagnoses and cannot be observed by conventional imaging techniques, which rely on increased permeability of the blood-brain barrier (BBB) in later stages of disease. Specific visualization of the early-activated cerebral endothelium would provide a powerful tool for the presymptomatic diagnosis of brain disease and evaluation of new therapies. Here, we present the design, construction and in vivo application of carbohydrate-functionalized nanoparticles that allow direct detection of endothelial markers E-/P-selectin (CD62E/CD62P) in acute inflammation. These first examples of MRI-visible glyconanoparticles display multiple copies of the natural complex glycan ligand of selectins. Their resulting sensitivity and binding selectivity has allowed acute detection of disease in mammals with beneficial implications for treatment of an expanding patient population suffering from neurological disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.0806787106DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607245PMC
January 2009

Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord.

Neuropharmacology 2008 Oct 12;55(5):780-7. Epub 2008 Jul 12.

Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.

The CNS inflammatory response is regulated by hepatic chemokine synthesis, which promotes leukocytosis and facilitates leukocyte recruitment to the site of injury. To understand the role of the individual cell populations in the liver during the hepatic response to acute brain injury, we selectively depleted Kupffer cells (KC), using clodronate-filled liposomes, and assessed the inflammatory response following a microinjection of IL-1beta into the rat brain or after a compression injury in the spinal cord. We show by immunohistochemistry that KC depletion reduces neutrophil infiltration into the IL-1beta-injected brain by 70% and by 50% into the contusion-injured spinal cord. qRT-PCR analysis of hepatic chemokine mRNA expression showed that chemokine expression in the liver after brain injury is not restricted to a single cell population. In non-depleted rats, CXCL-10, IL-1beta, CCL-2, and MIP-1alpha mRNAs were increased up to sixfold more than in KC depleted rats. However, CXCL-1 and MIP-1beta were not significantly affected by KC depletion. The reduction in chemokine mRNA expression by the liver was not associated with decreased neutrophil mobilisation as might have been expected. These findings suggest that in response to CNS injury, KC mediated mechanisms are responsible for increasing neutrophil entry to the site of CNS injury, but that neutrophil mobilisation is dependent on other non-KC mediated events. However, the suppression of KC activity may prevent secondary damage after acute brain injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2008.06.074DOI Listing
October 2008

Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain.

J Neuropathol Exp Neurol 2008 Mar;67(3):223-30

Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom.

Acute brain injury is associated with induction of hepatic chemokine expression, which is an essential element in the subsequent recruitment of leukocytes to the damaged brain. To further understand the significance of the hepatic inflammatory response, we focused on nuclear factor (NF)-kappa B, a pivotal regulator of inflammation. Nondestructive real-time whole-body imaging was undertaken in the 3XNF-kappa B-luciferase mouse to monitor NF-kappa B activation. Acute brain injury induced by intracerebral injection of interleukin-1 provoked rapid activation of hepatic and CNS NF-kappa B, with only minimal changes in other organs. Elevated NF-kappa B in the brain was limited to the site of the lesion, whereas hepatic NF-kappa B was widespread. The function of NF-kappa B in this model was determined by monitoring leukocyte recruitment to the liver and brain of nf kappa b1 mice, which lack the anti-inflammatory p50:p50 NF-kappa B homodimer. Brain injury in the nf kappa b1 mice was associated with increased neutrophil recruitment to the liver and brain compared with wild-type mice, thereby confirming a regulatory role for the NF-kappa B system. To determine the role of hepatic NF-kappa B, it was selectively inhibited by intravenous adenoviral-mediated delivery of an I kappa B alpha super-repressor. This treatment significantly reduced the numbers of neutrophils recruited to the brain. In conclusion, acute brain injury is associated with rapid and robust activation of hepatic NF-kappa B, which is required for efficient mobilization of circulating leukocytes to the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/NEN.0b013e3181654957DOI Listing
March 2008

A contrast agent recognizing activated platelets reveals murine cerebral malaria pathology undetectable by conventional MRI.

J Clin Invest 2008 Mar;118(3):1198-207

Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.

Human and murine cerebral malaria are associated with elevated levels of cytokines in the brain and adherence of platelets to the microvasculature. Here we demonstrated that the accumulation of platelets in the brain microvasculature can be detected with MRI, using what we believe to be a novel contrast agent, at a time when the pathology is undetectable by conventional MRI. Ligand-induced binding sites (LIBS) on activated platelet glycoprotein IIb/IIIa receptors were detected in the brains of malaria-infected mice 6 days after inoculation with Plasmodium berghei using microparticles of iron oxide (MPIOs) conjugated to a single-chain antibody specific for the LIBS (LIBS-MPIO). No binding of the LIBS-MPIO contrast agent was detected in uninfected animals. A combination of LIBS-MPIO MRI, confocal microscopy, and transmission electron microscopy revealed that the proinflammatory cytokine TNF-alpha, but not IL-1beta or lymphotoxin-alpha (LT-alpha), induced adherence of platelets to cerebrovascular endothelium. Peak platelet adhesion was found 12 h after TNF-alpha injection and was readily detected with LIBS-MPIO contrast-enhanced MRI. Temporal studies revealed that the level of MPIO-induced contrast was proportional to the number of platelets bound. Thus, the LIBS-MPIO contrast agent enabled noninvasive detection of otherwise undetectable cerebral pathology by in vivo MRI before the appearance of clinical disease, highlighting the potential of targeted contrast agents for diagnostic, mechanistic, and therapeutic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI33314DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242620PMC
March 2008

Immunomodulatory effects of etanercept in a model of brain injury act through attenuation of the acute-phase response.

J Neurochem 2007 Dec 18;103(6):2245-55. Epub 2007 Sep 18.

Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK.

TNF-alpha has proved to be a successful target in the treatment of many peripheral inflammatory diseases, but the same interventions worsen immune-mediated CNS disease. However, anti-TNF-alpha strategies may offer promise as therapy for non-immune CNS injury. In this study, we have microinjected IL-1beta or lipopolysaccharide (LPS) into the rat brain as a simple model of brain injury and have systemically administered the TNF-alpha antagonist etanercept to discover whether hepatic TNF-alpha, produced as part of the acute-phase response to CNS injury, modulates the inflammatory response in the brain. We report a significant reduction in neutrophil numbers recruited to the IL-1beta- or LPS-challenged brain as a result of TNF-alpha inhibition. We also show an attenuation in the levels of hepatic mRNA including TNF-alpha mRNA and of TNF-alpha-induced genes, such as the chemokines CCL-2, CXCL-5, and CXCL-10, although other chemokines elevated by the injury were not significantly changed. The reduction in hepatic chemokine synthesis results in reduced numbers of circulating neutrophils, and also a reduction in the numbers recruited to the liver as a consequence of brain injury. These findings suggest that TNF-alpha inhibitors may reduce CNS inflammatory responses by targeting the hepatic acute-phase response, and thus therapies for brain injury need not cross the blood-brain barrier to be effective.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04928.xDOI Listing
December 2007

Overexpression of IL-1beta by adenoviral-mediated gene transfer in the rat brain causes a prolonged hepatic chemokine response, axonal injury and the suppression of spontaneous behaviour.

Neurobiol Dis 2007 Aug 16;27(2):151-63. Epub 2007 May 16.

Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxfordshire, OX1 3QT, UK.

Acute brain injury induces early and transient hepatic expression of chemokines, which amplify the injury response and give rise to movement of leukocytes into the blood and subsequently the brain and liver. Here, we sought to determine whether an ongoing injury stimulus within the brain would continue to drive the hepatic chemokine response and how it impacts on behaviour and CNS integrity. We generated chronic IL-1beta expression in rat brain by adenoviral-mediated gene transfer, which resulted in chronic leukocyte recruitment, axonal injury and prolonged depression of spontaneous behaviour. IL-1beta could not be detected in circulating blood, but a chronic systemic response was established, including extended production of hepatic and circulating chemokines, leukocytosis, liver damage, weight loss, decreased serum albumin and marked liver leukocyte recruitment. Thus, hepatic chemokine synthesis is a feature of active chronic CNS disease and provides an accessible target for the suppression of CNS inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2007.04.013DOI Listing
August 2007

Expanding the diversity of chemical protein modification allows post-translational mimicry.

Nature 2007 Apr;446(7139):1105-9

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.

One of the most important current scientific paradoxes is the economy with which nature uses genes. In all higher animals studied, we have found many fewer genes than we would have previously expected. The functional outputs of the eventual products of genes seem to be far more complex than the more restricted blueprint. In higher organisms, the functions of many proteins are modulated by post-translational modifications (PTMs). These alterations of amino-acid side chains lead to higher structural and functional protein diversity and are, therefore, a leading contender for an explanation for this seeming incongruity. Natural protein production methods typically produce PTM mixtures within which function is difficult to dissect or control. Until now it has not been possible to access pure mimics of complex PTMs. Here we report a chemical tagging approach that enables the attachment of multiple modifications to bacterially expressed (bare) protein scaffolds: this approach allows reconstitution of functionally effective mimics of higher organism PTMs. By attaching appropriate modifications at suitable distances in the widely-used LacZ reporter enzyme scaffold, we created protein probes that included sensitive systems for detection of mammalian brain inflammation and disease. Through target synthesis of the desired modification, chemistry provides a structural precision and an ability to retool with a chosen PTM in a manner not available to other approaches. In this way, combining chemical control of PTM with readily available protein scaffolds provides a systematic platform for creating probes of protein-PTM interactions. We therefore anticipate that this ability to build model systems will allow some of this gene product complexity to be dissected, with the aim of eventually being able to completely duplicate the patterns of a particular protein's PTMs from an in vivo assay into an in vitro system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature05757DOI Listing
April 2007

Post-conditioning with lipopolysaccharide reduces the inflammatory infiltrate to the injured brain and spinal cord: a potential neuroprotective treatment.

Eur J Neurosci 2005 Nov;22(10):2441-50

Experimental Neuropathology, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, UK.

Systemic infection often accompanies or precedes acute brain injury, but it remains unclear how the systemic response contributes to outcome. To examine this problem we have microinjected recombinant interleukin-1beta (IL-1beta), a cytokine associated with acute brain injury, into the rat brain parenchyma and either preceded or followed this challenge with the intravenous injection of lipopolysaccharide (LPS), which mimics systemic inflammatory response syndrome. The microinjection of IL-1beta alone into the brain parenchyma gives rise to leukocyte mobilization in the blood, and to the delayed recruitment of neutrophils and monocytes to the brain with no evidence of blood-brain barrier breakdown or overt neuronal cell death. Systemic LPS pre-conditioning resulted in a dose-dependent reduction both in the number of circulating leukocytes and in the number of leukocytes recruited to the brain parenchyma after 12 h. Surprisingly, LPS given two hours after injury was equally effective in reducing the recruitment of leukocytes to the brain, which is more relevant to the management of clinical disease. In a more clinically relevant model of spinal cord injury, intravenous LPS post-conditioning also reduced the numbers of leukocytes mobilized in the blood and recruited to the spinal cord and thus limited the breakdown of the blood-spinal cord barrier. The effects appear to be specific to LPS, as they were not observed after intravenous IL-1beta pre-conditioning. Our studies suggest that individual pro-inflammatory conditioning strategies may protect the injured central nervous system from the damaging consequences of leukocyte recruitment and may provide scope for novel therapeutic intervention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.04447.xDOI Listing
November 2005

Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver.

Am J Pathol 2005 May;166(5):1487-97

Department of Pharmacology, University of Oxford, Oxfordshire OX1 3QT, United Kingdom.

The administration of interleukin-1beta to the brain induces hepatic CXC chemokine synthesis, which increases neutrophil levels in the blood, liver, and brain. We now show that such hepatic response is not restricted to the CXC chemokines. CCL-2, a CC chemokine, was released by the liver in response to a tumor necrosis factor (TNF)-alpha challenge to the brain and boosted monocyte levels. Furthermore, a clinically relevant compression injury to the spinal cord triggered hepatic chemokine expression of both types. After a spinal cord injury, elevated CCL-2 and CXCL-1 mRNA and protein were observed in the liver by TaqMan reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay as early as 2 to 4 hours. Simultaneously, we observed elevated levels of these chemokines and circulating leukocyte populations in the blood. Leukocytes were recruited to the liver at this early stage, whereas at the site of challenge in the central nervous system, few were observed until 24 hours. Artificial elevation of blood CCL-2 triggered dose-dependent monocyte mobilization in the blood and enhanced monocyte recruitment to the brain after TNF-alpha challenge. Attenuation of hepatic CCL-2 production with corticosteroids resulted in reduced monocyte levels after the TNF-alpha challenge. Thus, combined production of CC and CXC hepatic chemokines appears to amplify the central nervous system response to injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1606402PMC
http://dx.doi.org/10.1016/S0002-9440(10)62365-6DOI Listing
May 2005

Differential regulation of type I and type II interleukin-1 receptors in focal brain inflammation.

Eur J Neurosci 2005 Mar;21(5):1205-14

Molecular Neuropathology Laboratory, School of Biological Sciences, University of Southampton, UK.

Most pathologies of the brain have an inflammatory component, associated with the release of cytokines such as interleukin-1beta (IL-1beta) from resident and infiltrating cells. The IL-1 type I receptor (IL-1RI) initiates a signalling cascade but the type II receptor (IL-1RII) acts as a decoy receptor. Here we have investigated the expression of IL-1beta, IL-1RI and IL-1RII in distinct inflammatory lesions in the rat brain. IL-1beta was injected into the brain to generate an inflammatory lesion in the absence of neuronal cell death whereas neuronal death was specifically induced by the microinjection of N-methyl-D-aspartate (NMDA). Using TaqMan RT-PCR and ELISA, we observed elevated de novo IL-1beta synthesis 2 h after the intracerebral microinjection of IL-1beta; this de novo IL-1beta remained elevated 24 h later. There was a concomitant increase in IL-1RI mRNA but a much greater increase in IL-1RII mRNA. Immunostaining revealed that IL-1RII was expressed on brain endothelial cells and on infiltrating neutrophils. In contrast, although IL-1beta and IL-1RI were elevated to similar levels in response to NMDA challenge, the response was delayed and IL-1RII mRNA expression was unchanged. The lesion-specific expression of IL-1 receptors suggests that the receptors are differentially regulated in a manner not directly related to the endogenous level of IL-1 in the CNS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2005.03965.xDOI Listing
March 2005

The murine Cyp1a1 gene is expressed in a restricted spatial and temporal pattern during embryonic development.

J Biol Chem 2005 Feb 29;280(7):5828-35. Epub 2004 Nov 29.

Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Centre, University of Dundee, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.

In adult mice the cytochrome P450 Cyp1a1 gene is not constitutively expressed but is highly inducible by foreign compounds acting through the aryl hydrocarbon (Ah) receptor. However, the expression profile of the Cyp1a1 gene in the developing embryo is not well under-stood. Using established transgenic mouse lines where 8.5 kb of the rat CYP1A1 promoter is cloned upstream of the lacZ reporter gene (1), we describe the expression of the CYP1A1-driven reporter gene in all tissues through-out stages E7-E14 of embryonic development. In contrast to the absence of constitutive Cyp1a1 and lacZ transgene expression in tissues of the adult mouse, a constitutive cell-specific and time-dependent pattern of CYP1A1 promoter activity was observed in the embryo. This expression pattern was confirmed as reflecting the endogenous gene by measuring Cyp1a1 mRNA levels and protein expression by immunohistochemistry. The number of cells displaying endogenous CYP1A1 activity could be increased in the embryo upon xenobiotic challenge, but only within areas where the CYP1A1 promotor was already active. When reporter mice were bred onto a genetic background expressing a lower affinity form of the Ah receptor (DBA allele), transgene and murine Cyp1a1 protein expression were both attenuated in the adult mouse liver upon xenobiotic challenge. By comparison, constitutive CYP1A1 promoter activity in the embryo was identical in the presence of either the high or low affinity Ah receptor. These novel data suggest that the Cyp1a1 protein may play a role in murine development and that regulation of the Cyp1a1 gene during this period is either through the action of a high affinity Ah receptor ligand or by an alternative regulatory pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M412899200DOI Listing
February 2005

Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine.

FEBS Lett 2004 Jun;568(1-3):49-54

Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.

Multiple sclerosis is a major cause of non-traumatic neurological disability. The identification of markers that differentiate disease progression is critical to effective therapy. A combination of NMR spectroscopic metabolic profiling of urine and statistical pattern recognition was used to detect focal inflammatory central nervous system (CNS) lesions induced by microinjection of a replication-deficient recombinant adenovirus expressing TNF-alpha or IL1-beta cDNA into the brains of Wistar rats. These animals were compared with a group of naïve rats and a group of animals injected with an equivalent null adenovirus. Urine samples were collected 7 days after adenovirus injection, when the inflammatory lesion is maximally active. Principal components analysis and Partial Least Squares-Discriminate analysis of the urine (1)H NMR spectra revealed significant differences between each of the cytokine adenovirus groups and the control groups; for the TNF-alpha group the main differences lay in citrate and succinate, while for the IL-1beta group the predominant changes occurred in leucine, isoleucine, valine and myo-inositol. Thus, we can identify urinary metabolic vectors that not only separate rats with inflammatory lesions in the brain from control animals, but also distinguish between different types of CNS inflammatory lesions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.04.096DOI Listing
June 2004

Reduction of excitotoxicity and associated leukocyte recruitment by a broad-spectrum matrix metalloproteinase inhibitor.

J Neurochem 2004 Jun;89(6):1378-86

Molecular Neuropathology Laboratory, School of Biological Sciences, University of Southampton, Biomedical Sciences Building, Southampton SO16 7PX, UK.

An important step in the cascade leading to neuronal cell death is degradation of laminin and other components of the brain extracellular matrix by microglia-derived proteases. Excitotoxic cell death of murine hippocampal neurones in vivo can be prevented by inhibitors of tissue plasminogen activator (tPA) or by inhibitors of plasmin. Plasmin is a potent activator of the matrix metalloproteinases (MMPs), which are made by resident and recruited leukocytes following CNS injury. In this study, we show, using Taqman RT-PCR, that MMP mRNAs, but not other calcium-dependent proteases such as calpain mRNAs, are acutely up-regulated after an excitotoxic challenge in vivo. alpha(2)-antiplasmin or BB-3103, a broad-spectrum inhibitor of the MMPs, co-injected with kainic acid into the striatum, inhibits excitotoxic cell death in the rat striatum, and reduces both the number of recruited macrophages and the size of the lesion. We also show that leukocyte populations differentially express MMPs, which may account, in part, for the expression profile we observe in the challenged brain. Our results show that inhibition of the MMPs in the rat will prevent kainic acid-induced cell death in the brain. These studies suggest that MMP inhibitors have therapeutic potential for use in stroke, and support the increasing evidence that microglial activation may contribute to neuronal cell death.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2004.02441.xDOI Listing
June 2004

Hdm2 recruits a hypoxia-sensitive corepressor to negatively regulate p53-dependent transcription.

Curr Biol 2003 Jul;13(14):1234-9

Cancer Sciences Division, School of Medicine, University of Southampton, MP 824, Southampton General Hospital, Southampton SO16 6YD, United Kingdom.

The transcription factor p53 lies at the center of a protein network that controls cell cycle progression and commitment to apoptosis. p53 is inactive in proliferating cells, largely because of negative regulation by the Hdm2/Mdm2 oncoprotein, with which it physically associates. Release from this negative regulation is sufficient to activate p53 and can be triggered in cells by multiple stimuli through diverse pathways. This diversity is achieved in part because Hdm2 uses multiple mechanisms to inactivate p53; it targets p53 for ubiquitination and degradation by the proteosome, shuttles it out of the nucleus and into the cytoplasm, prevents its interaction with transcriptional coactivators, and contains an intrinsic transcriptional repressor activity. Here we show that Hdm2 can also repress p53 activity through the recruitment of a known transcriptional corepressor, hCtBP2. This interaction, and consequent repression of p53-dependent transcription, is relieved under hypoxia or hypoxia-mimicking conditions that are known to increase levels of intracellular NADH. CtBP proteins can undergo an NADH-induced conformational change, which we show here results in a loss of their Hdm2 binding ability. This pathway represents a novel mechanism whereby p53 activity can be induced by cellular stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-9822(03)00454-8DOI Listing
July 2003

CINC-1 is an acute-phase protein induced by focal brain injury causing leukocyte mobilization and liver injury.

FASEB J 2003 Jun 22;17(9):1168-70. Epub 2003 Apr 22.

Molecular Neuropathology Laboratory, School of Biological Sciences, University of Southampton, Biomedical Sciences Building, Southampton S016 7PX, UK.

Following injury or infection, the liver releases acute-phase proteins (APP). After a severe focal injury, this systemic response can be excessive and may lead to multiorgan dysfunction (MODS). CINC-1 is a neutrophil chemoattractant, and we have now established that it also functions as an early APP after injury to the brain or to peripheral tissues. After induction of a focal inflammatory lesion in the brain, there is rapid hepatic and serum CINC-1 induction, which is associated with increases in neutrophil numbers within the liver and within the circulation. CINC-1-mediated recruitment of neutrophils to organs distant from the primary injury site may contribute to MODS. Indeed, we found that enzyme markers of liver tissue injury are increased in the serum following generation of a focal inflammatory lesion in the brain. Neutralization of CINC-1 in the periphery reversed brain-injury-induced neutrophil mobilization and inhibited recruitment of neutrophils to the brain and to the liver. Thus, a significant component of the hepatic acute-phase response is the release of chemokines by the liver, which act to amplify the inflammatory response and modulate the subsequent leukocytosis and secondary tissue damage. Hepatic CINC-1 synthesis following injury presents a novel focus for treatment of inflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.02-0757fjeDOI Listing
June 2003

Differential induction of interleukin-1beta and tumour necrosis factor-alpha may account for specific patterns of leukocyte recruitment in the brain.

Brain Res 2002 Dec;958(1):89-99

CNS Inflammation Group, School of Biological Sciences, University of Southampton, Biomedical Sciences Building, Southampton SO16 7PX, UK.

In peripheral tissue, IL-1beta has been shown to induce TNFalpha expression and vice versa, resulting in mixed neutrophil and mononuclear cell recruitment to the site of injury. This has led to the concept of crosstalk in peripheral cytokine signalling pathways. In the brain parenchyma, however, restricted patterns of leukocyte recruitment following the focal injection of pro-inflammatory agents into the brain are observed. This study investigates the expression of the principal pro-inflammatory cytokines--IL-1beta and TNFalpha--in the brain after IL-1beta, TNFalpha, NMDA or endotoxin injection into the brain parenchyma of rats. Each of these agents gives rise to a distinct pattern of acute leukocyte recruitment at 24 h. We found that IL-1beta induces de novo synthesis of additional IL-1beta but not TNFalpha, as determined by RT-PCR and ELISA, and TNFalpha does not induce either itself or IL-1beta. Injection of NMDA results in IL-1beta, but not TNFalpha up-regulation. Injection of IL-1beta or NMDA is associated with neutrophil recruitment whereas injection of TNFalpha is associated with mononuclear cell recruitment. Following injection of endotoxin, both TNFalpha and IL-1beta levels are elevated and neutrophils and mononuclear cells are recruited to the brain. These data suggest that the signalling pathways that are present in the periphery are modified in the brain and that differential induction of TNFalpha and IL-1beta may have a role in the atypical pattern of leukocyte recruitment observed in the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(02)03473-xDOI Listing
December 2002

Altered chemokine expression in the spinal cord and brain contributes to differential interleukin-1beta-induced neutrophil recruitment.

J Neurochem 2002 Oct;83(2):432-41

Molecular Neuropathology Laboratory and CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, UK.

The pattern of neutrophil recruitment that accompanies inflammation in the CNS depends on the site of injury and the stage of development. The adult brain parenchyma is refractory to neutrophil recruitment and associated damage as compared to the spinal cord or juvenile brain. Using quantitative Taqman RT-PCR and enzyme-liked immunosorbent assay (ELISA), we compared mRNA and protein expression of the rat neutrophil chemoattractant chemokines (CINC) in spinal cord and brain of adult and juvenile rats to identify possible association with the observed differences in neutrophil recruitment. Interleukin-1beta (IL-1beta) injection resulted in up-regulated chemokine expression in both brain and spinal cord. CINC-3 mRNA was elevated above CINC-1 and CINC-2alpha, with expression levels for each higher in spinal cord than in brain. By ELISA, IL-1beta induced greater CINC-1 and CINC-2alpha expression compared to CINC-3, with higher protein levels in spinal cord than in brain. In the juvenile brain, significantly higher levels of CINC-2alpha protein were observed in response to IL-1beta injection than in the adult brain following an equivalent challenge. Correspondingly, neutrophil recruitment was observed in the juvenile brain and adult spinal cord, but not in the adult brain. No expression of CINC-2beta mRNA was detected. Thus differential chemokine induction may contribute to variations in neutrophil recruitment in during development and between the different CNS compartments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.2002.01166.xDOI Listing
October 2002

The systemic and local acute phase response following acute brain injury.

J Cereb Blood Flow Metab 2002 Mar;22(3):318-26

CNS Inflammation Group, School of Biological Sciences, University of Southampton, Southampton, Hampshire, UK.

It is not known whether acute brain injury results in a systemic acute phase response (APR) or whether an APR influences outcome after an insult to the CNS. The present study sought to establish whether brain injury elicits a systemic or local APR. The expression of acute phase protein (APP) mRNA in liver and brain tissues was measured by Taqman reverse transcriptase-polymerase chain reaction after an excitotoxic lesion in the striatum or challenge with a proinflammatory cytokine. N-methyl-d-aspartate (NMDA)-induced brain lesion did not elicit a systemic APR. In contrast, proinflammatory challenge with mouse recombinant interleukin-1beta (mrIL-1beta) resulted in a significant hepatic APP mRNA expression within 6 hours. Thus, an inflammatory challenge that results in a meningitis leads to a hepatic APR, whereas acute brain injury alone, with no evidence of a meningitis, does not produce an APR. This is surprising because NMDA leads to an increase in endogenous IL-1beta synthesis. This suggests that the brain has an endogenous antiinflammatory mechanism, which protects against the spread of inflammation after an acute injury. In the brain, both excitotoxic lesions and proinflammatory challenge resulted in a profound parenchymal upregulation of APP mRNA after 6 and 12 hours in the injected hemisphere. These results suggest that the local APR may play a role as an antiinflammatory mechanism. These findings indicate a potentially pivotal role for peripheral and local APP production on outcome after brain injury.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/00004647-200203000-00009DOI Listing
March 2002
-->