Publications by authors named "Saket Jain"

17 Publications

  • Page 1 of 1

Metabolic Drivers of Invasion in Glioblastoma.

Front Cell Dev Biol 2021 1;9:683276. Epub 2021 Jul 1.

Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.

Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM's ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2021.683276DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8281286PMC
July 2021

Role of c-Met/β1 integrin complex in the metastatic cascade in breast cancer.

JCI Insight 2021 Jun 22;6(12). Epub 2021 Jun 22.

Department of Neurological Surgery, UCSF, San Francisco, California, USA.

Metastases cause 90% of human cancer deaths. The metastatic cascade involves local invasion, intravasation, extravasation, metastatic site colonization, and proliferation. Although individual mediators of these processes have been investigated, interactions between these mediators remain less well defined. We previously identified a complex between receptor tyrosine kinase c-Met and β1 integrin in metastases. Using cell culture and in vivo assays, we found that c-Met/β1 complex induction promoted intravasation and vessel wall adhesion in triple-negative breast cancer cells, but did not increase extravasation. These effects may have been driven by the ability of the c-Met/β1 complex to increase mesenchymal and stem cell characteristics. Multiplex transcriptomic analysis revealed upregulated Wnt and hedgehog pathways after c-Met/β1 complex induction. A β1 integrin point mutation that prevented binding to c-Met reduced intravasation. OS2966, a therapeutic antibody disrupting c-Met/β1 binding, decreased breast cancer cell invasion and mesenchymal gene expression. Bone-seeking breast cancer cells exhibited higher levels of c-Met/β1 complex than parental controls and preferentially adhered to tissue-specific matrix. Patient bone metastases demonstrated higher c-Met/β1 complex than brain metastases. Thus, the c-Met/β1 complex drove intravasation of triple-negative breast cancer cells and preferential affinity for bone-specific matrix. Pharmacological targeting of the complex may have prevented metastases, particularly osseous metastases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/jci.insight.138928DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262466PMC
June 2021

Plurihormonal PIT-1-Positive Pituitary Adenomas: A Systematic Review and Single-Center Series.

World Neurosurg 2021 Jul 20;151:e185-e191. Epub 2021 Apr 20.

Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California, USA. Electronic address:

Objective: The 2017 World Health Organization classification of pituitary adenomas identified the plurihormonal PIT-1-positive (PP1) adenoma as a distinct subtype. The reported data suggest that PP1 adenomas encompass the former class of silent subtype 3 (SS3) adenomas and might have an aggressive phenotype. In the present study, we summarized the current clinical data on PP1 and SS3 adenomas and compared the reported data with the data from a single institutional cohort.

Methods: Medline and Google Scholar were searched from 1990 to 2020 for clinical series of PP1 and SS3 adenomas in accordance with the PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. Studies were included if they had reported pituitary pathology as PP1 or SS3 adenomas and had reported the clinical outcomes after surgical intervention. To better define the PP1 phenotype compared with non-PP1 adenomas, we also reviewed the adenomas treated surgically at our institution from 2012 to 2019.

Results: Of all the tumors reported in the studies as PP1 or SS3, 99% were macroadenomas and 18% were giant adenomas (>4 cm). Of the reported patients, 31.8% had received radiotherapy, and 22.9% had undergone multiple surgeries for their pituitary tumor. In our single-center experience, 20 patients had an adenoma that met the criteria for a PP1 adenoma. Compared with the 1146 non-PP1 tumors, the PP1 tumors did not show statistically significant differences in the extent of resection, size, number of previous surgeries, future reoperations, rate of radiotherapy, p53 staining, or MIB-1 labeling index.

Conclusions: The findings from the present large, single-center study comparing PP1 and non-PP1 adenomas do not suggest that PP1 tumors are more aggressive. Further work is warranted to identify the pathologic subtypes of pituitary adenomas that are consistently more clinically aggressive.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2021.04.003DOI Listing
July 2021

The Role of Cancer-Associated Fibroblasts in Tumor Progression.

Cancers (Basel) 2021 Mar 19;13(6). Epub 2021 Mar 19.

Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA.

In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers13061399DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003545PMC
March 2021

Synthesis of Chiral-Substituted 2-Aryl-ferrocenes by the Catellani Reaction.

J Org Chem 2020 Dec 16;85(23):14866-14878. Epub 2020 Nov 16.

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India.

A palladium-catalyzed and norbornene-mediated methodology has been developed for the synthesis of chiral 2-aryl-ferroceneamides from chiral 2-iodo-,-diisopropylferrocencarboxamide, iodoarenes, and alkenes using a JohnPhos ligand and potassium carbonate as a base in dimethylformamide at 105 °C. The developed three-component coupling protocol allows the compatibility of electron-withdrawing fluoro, chloro, ester, and nitro and electron-donating methyl, methoxy, dimethoxy, benzyl ether-substituted iodo-benzenes, other iodoarenes, such as iodo-naphthalene, heteroarenes, such as iodothiophene, and terminating substrates, such as methyl, ethyl, -butyl acrylates, and substituted styrenes with 2-iodo-,-diisopropylferrocencarboxamide. Furthermore, the developed three-component Catellani method proceeded with the retention of the configuration of the planar chiral ferrocene, which depends on the role of the participating carbon-iodine bond in ferrocene. Consequently, the developed protocol enabled the formation of densely substituted chiral 2-aryl ferroceneamides, exhibiting good to excellent enantioselectivity. The conversion of an ester of the synthesized chiral 2-aryl ferroceneamides has also been carried out to further accommodate the easily expendable acid and alcohol functionalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.0c01360DOI Listing
December 2020

The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells.

Mol Oncol 2020 12 23;14(12):3100-3120. Epub 2020 Oct 23.

Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.

Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid-binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial-to-mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β-oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP-PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/1878-0261.12818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7718947PMC
December 2020

Clinical characteristics and outcomes in elderly patients undergoing transsphenoidal surgery for nonfunctioning pituitary adenoma.

Neurosurg Focus 2020 10;49(4):E19

Departments of2Neurological Surgery and.

Objective: Life expectancy has increased over the past century, causing a shift in the demographic distribution toward older age groups. Elderly patients comprise up to 14% of all patients with pituitary tumors, with most lesions being nonfunctioning pituitary adenomas (NFPAs). Here, the authors evaluated demographics, outcomes, and postoperative complications between nonelderly adult and elderly NFPA patients.

Methods: A retrospective review of 908 patients undergoing transsphenoidal surgery (TSS) for NFPA at a single institution from 2007 to 2019 was conducted. Clinical and surgical outcomes and postoperative complications were compared between nonelderly adult (age ≥ 18 and ≤ 65 years) and elderly patients (age > 65 years).

Results: There were 614 and 294 patients in the nonelderly and elderly groups, respectively. Both groups were similar in sex (57.3% vs 60.5% males; p = 0.4), tumor size (2.56 vs 2.46 cm; p = 0.2), and cavernous sinus invasion (35.8% vs 33.7%; p = 0.6). Regarding postoperative outcomes, length of stay (1 vs 2 days; p = 0.5), extent of resection (59.8% vs 64.8% gross-total resection; p = 0.2), CSF leak requiring surgical revision (4.3% vs 1.4%; p = 0.06), 30-day readmission (8.1% vs 7.3%; p = 0.7), infection (3.1% vs 2.0%; p = 0.5), and new hypopituitarism (13.9% vs 12.0%; p = 0.3) were similar between both groups. Elderly patients were less likely to receive adjuvant radiation (8.7% vs 16.3%; p = 0.009), undergo future reoperation (3.8% vs 9.5%; p = 0.003), and experience postoperative diabetes insipidus (DI) (3.7% vs 9.4%; p = 0.002), and more likely to have postoperative hyponatremia (26.7% vs 16.4%; p < 0.001) and new cranial nerve deficit (1.9% vs 0.0%; p = 0.01). Subanalysis of elderly patients showed that patients with higher Charlson Comorbidity Index scores had comparable outcomes other than higher DI rates (8.1% vs 0.0%; p = 0.006). Elderly patients' postoperative sodium peaked and troughed on postoperative day 3 (POD3) (mean 138.7 mEq/L) and POD9 (mean 130.8 mEq/L), respectively, compared with nonelderly patients (peak POD2: mean 139.9 mEq/L; trough POD8: mean 131.3 mEq/L).

Conclusions: The authors' analysis revealed that TSS for NFPA in elderly patients is safe with low complication rates. In this cohort, more elderly patients experienced postoperative hyponatremia, while more nonelderly patients experienced postoperative DI. These findings, combined with the observation of higher DI in patients with more comorbidities and elderly patients experiencing later peaks and troughs in serum sodium, suggest age-related differences in sodium regulation after NFPA resection. The authors hope that their results will help guide discussions with elderly patients regarding risks and outcomes of TSS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3171/2020.7.FOCUS20524DOI Listing
October 2020

Clinical characteristics and outcomes of null-cell versus silent gonadotroph adenomas in a series of 1166 pituitary adenomas from a single institution.

Neurosurg Focus 2020 06;48(6):E13

3Department of Neurological Surgery, University of California, San Francisco, California.

Objective: Nonfunctioning pituitary adenomas present without biochemical or clinical signs of hormone excess and are the second most common type of pituitary adenomas. The 2017 WHO classification scheme of pituitary adenomas differentiates null-cell adenomas (NCAs) and silent gonadotroph adenomas (SGAs). The present study sought to highlight the differences in patient characteristics and clinical outcomes between NCAs and SGAs.

Methods: The records of 1166 patients who underwent transsphenoidal surgery for pituitary adenoma between 2012 and 2019 at a single institution were retrospectively reviewed. Patient demographics and clinical outcomes were collected.

Results: Of the overall pituitary adenoma cohort, 12.8% (n = 149) were SGAs and 9.2% (n = 107) NCAs. NCAs were significantly more common in female patients than SGAs (61.7% vs 26.8%, p < 0.001). There were no differences in patient demographics, initial tumor size, or perioperative and short-term clinical outcomes. There was no significant difference in the amount of follow-up between patients with NCAs and those with SGAs (33.8 months vs 29.1 months, p = 0.237). Patients with NCAs had significantly higher recurrence (p = 0.021), adjuvant radiation therapy usage (p = 0.002), and postoperative diabetes insipidus (p = 0.028). NCA pathology was independently associated with tumor recurrence (HR 3.64, 95% CI 1.07-12.30; p = 0.038), as were cavernous sinus invasion (HR 3.97, 95% CI 1.04-15.14; p = 0.043) and anteroposterior dimension of the tumor (HR 2.23, 95% CI 1.09-4.59; p = 0.030).

Conclusions: This study supports the definition of NCAs and SGAs as separate subgroups of nonfunctioning pituitary adenomas, and it highlights significant differences in long-term clinical outcomes, including tumor recurrence and the associated need for adjuvant radiation therapy, as well as postoperative diabetes insipidus. The authors also provide insight into independent risk factors for these outcomes in the adenoma population studied, providing clinicians with additional predictors of patient outcomes. Follow-up studies will hopefully uncover mechanisms of biological aggressiveness in NCAs and associated molecular targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3171/2020.3.FOCUS20114DOI Listing
June 2020

Clonal ZEB1-Driven Mesenchymal Transition Promotes Targetable Oncologic Antiangiogenic Therapy Resistance.

Cancer Res 2020 04 10;80(7):1498-1511. Epub 2020 Feb 10.

Department of Neurosurgery, University of California San Francisco, San Francisco, California.

Glioblastoma (GBM) responses to bevacizumab are invariably transient with acquired resistance. We profiled paired patient specimens and bevacizumab-resistant xenograft models pre- and post-resistance toward the primary goal of identifying regulators whose targeting could prolong the therapeutic window, and the secondary goal of identifying biomarkers of therapeutic window closure. Bevacizumab-resistant patient specimens and xenografts exhibited decreased vessel density and increased hypoxia versus pre-resistance, suggesting that resistance occurs despite effective therapeutic devascularization. Microarray analysis revealed upregulated mesenchymal genes in resistant tumors correlating with bevacizumab treatment duration and causing three changes enabling resistant tumor growth in hypoxia. First, perivascular invasiveness along remaining blood vessels, which co-opts vessels in a VEGF-independent and neoangiogenesis-independent manner, was upregulated in novel biomimetic 3D bioengineered platforms modeling the bevacizumab-resistant microenvironment. Second, tumor-initiating stem cells housed in the perivascular niche close to remaining blood vessels were enriched. Third, metabolic reprogramming assessed through real-time bioenergetic measurement and metabolomics upregulated glycolysis and suppressed oxidative phosphorylation. Single-cell sequencing of bevacizumab-resistant patient GBMs confirmed upregulated mesenchymal genes, particularly glycoprotein YKL-40 and transcription factor ZEB1, in later clones, implicating these changes as treatment-induced. Serum YKL-40 was elevated in bevacizumab-resistant versus bevacizumab-naïve patients. CRISPR and pharmacologic targeting of ZEB1 with honokiol reversed the mesenchymal gene expression and associated stem cell, invasion, and metabolic changes defining resistance. Honokiol caused greater cell death in bevacizumab-resistant than bevacizumab-responsive tumor cells, with surviving cells losing mesenchymal morphology. Employing YKL-40 as a resistance biomarker and ZEB1 as a target to prevent resistance could fulfill the promise of antiangiogenic therapy. SIGNIFICANCE: Bevacizumab resistance in GBM is associated with mesenchymal/glycolytic shifts involving YKL-40 and ZEB1. Targeting ZEB1 reduces bevacizumab-resistant GBM phenotypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1498/F1.large.jpg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-1305DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236890PMC
April 2020

A positive feedback loop involving nuclear factor IB and calpain 1 suppresses glioblastoma cell migration.

J Biol Chem 2019 08 1;294(34):12638-12654. Epub 2019 Jul 1.

Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada

Glioblastoma (GBM) is a brain tumor that remains largely incurable because of its highly-infiltrative properties. Nuclear factor I (NFI)-type transcription factors regulate genes associated with GBM cell migration and infiltration. We have previously shown that NFI activity depends on the NFI phosphorylation state and that calcineurin phosphatase dephosphorylates and activates NFI. Calcineurin is cleaved and activated by calpain proteases whose activity is, in turn, regulated by an endogenous inhibitor, calpastatin (CAST). The gene is a target of NFI in GBM cells, with differentially phosphorylated NFIs regulating the levels of transcript variants. Here, we uncovered an NFIB-calpain 1-positive feedback loop mediated through CAST and calcineurin. In NFI-hyperphosphorylated GBM cells, NFIB expression decreased the CAST-to-calpain 1 ratio in the cytoplasm. This reduced ratio increased autolysis and activity of cytoplasmic calpain 1. Conversely, in NFI-hypophosphorylated cells, NFIB expression induced differential subcellular compartmentalization of CAST and calpain 1, with CAST localizing primarily to the cytoplasm and calpain 1 to the nucleus. Overall, this altered compartmentalization increased nuclear calpain 1 activity. We also show that nuclear calpain 1, by cleaving and activating calcineurin, induces NFIB dephosphorylation. Of note, knockdown of calpain 1, NFIB, or both increased GBM cell migration and up-regulated the pro-migratory factors fatty acid-binding protein 7 (FABP7) and Ras homolog family member A (RHOA). In summary, our findings reveal bidirectional cross-talk between NFIB and calpain 1 in GBM cells. A physiological consequence of this positive feedback loop appears to be decreased GBM cell migration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.RA119.008291DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6709629PMC
August 2019

NFIB promotes cell survival by directly suppressing p21 transcription in TP53-mutated triple-negative breast cancer.

J Pathol 2019 02 18;247(2):186-198. Epub 2018 Dec 18.

Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Canada.

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited treatment options and poor prognosis. There is an urgent need to identify and understand the key factors and signalling pathways driving TNBC tumour progression, relapse, and treatment resistance. In this study, we report that gene copy numbers and expression levels of nuclear factor IB (NFIB), a recently identified oncogene in small cell lung cancer, are preferentially increased in TNBC compared to other breast cancer subtypes. Furthermore, increased levels of NFIB are significantly associated with high tumour grade, poor prognosis, and reduced chemotherapy response. Concurrent TP53 mutations and NFIB overexpression (z-scores > 0) were observed in 77.9% of TNBCs, in contrast to 28.5% in non-TNBCs. Depletion of NFIB in TP53-mutated TNBC cell lines promotes cell death, cell cycle arrest, and enhances sensitivity to docetaxel, a first-line chemotherapeutic drug in breast cancer treatment. Importantly, these alterations in growth properties were accompanied by induction of CDKN1A, the gene encoding p21, a downstream effector of p53. We show that NFIB directly interacts with the CDKN1A promoter in TNBC cells. Furthermore, knockdown of combined p21 and NFIB reverses the docetaxel-induced cell growth inhibition observed upon NFIB knockdown, indicating that NFIB's effect on chemotherapeutic drug response is mediated through p21. Our results indicate that NFIB is an important TNBC factor that drives tumour cell growth and drug resistance, leading to poor clinical outcomes. Thus, targeting NFIB in TP53-mutated TNBC may reverse oncogenic properties associated with mutant p53 by restoring p21 activity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/path.5182DOI Listing
February 2019

Nuclear Factor I Represses the Notch Effector HEY1 in Glioblastoma.

Neoplasia 2018 10 6;20(10):1023-1037. Epub 2018 Sep 6.

Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 1Z2. Electronic address:

Glioblastomas (GBMs) are highly aggressive brain tumors with a dismal prognosis. Nuclear factor I (NFI) is a family of transcription factors that controls glial cell differentiation in the developing central nervous system. NFIs have previously been shown to regulate the expression of astrocyte markers such as glial fibrillary acidic protein (GFAP) in both normal brain and GBM cells. We used chromatin immunoprecipitation (ChIP)-on-chip to identify additional NFI targets in GBM cells. Analysis of our ChIP data revealed ~400 putative NFI target genes including an effector of the Notch signaling pathway, HEY1, implicated in the maintenance of neural stem cells. All four NFIs (NFIA, NFIB, NFIC, and NFIX) bind to NFI recognition sites located within 1 kb upstream of the HEY1 transcription site. We further showed that NFI negatively regulates HEY1 expression, with knockdown of all four NFIs in GBM cells resulting in increased HEY1 RNA levels. HEY1 knockdown in GBM cells decreased cell proliferation, increased cell migration, and decreased neurosphere formation. Finally, we found a general correlation between elevated levels of HEY1 and expression of the brain neural stem/progenitor cell marker B-FABP in GBM cell lines. Knockdown of HEY1 resulted in an increase in the RNA levels of the GFAP astrocyte differentiation marker. Overall, our data indicate that HEY1 is negatively regulated by NFI family members and is associated with increased proliferation, decreased migration, and increased stem cell properties in GBM cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neo.2018.08.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6138789PMC
October 2018

Evaluation of Flexural Strength of Polymethyl Methacrylate modified with Silver Colloidal Nanoparticles subjected to Two Different Curing Cycles: An in vitro Study.

J Contemp Dent Pract 2018 Mar 1;19(3):262-268. Epub 2018 Mar 1.

Department of Prosthodontics, RKDF Dental College and Research Centre, Bhopal, Madhya Pradesh, India.

Aim: Silver colloidal nanoparticles have been incorporated into acrylic resins to induce antimicrobial properties. However, as additives, they can influence the mechanical properties of the final product. Mechanical properties are also dependent on different curing cycles. The aim of this study was to evaluate flexural strength of a denture base resin incorporated with different concentrations of silver colloidal nanoparticles subjected to two different curing cycles.

Materials And Methods: Lucitone 199 denture base resin was used into which silver colloidal nanoparticles were incorporated at 0.5 and 5% by polymer mass. Specimens devoid of nanoparticles were used as controls. A total of 60 specimens were fabricated and divided into two groups. Each group was divided into three subgroups consisting of 10 specimens each. The specimens were fabricated according to American Dental Association (ADA) specification No. 12 and tested for flexural strength using universal testing machine.

Results: Silver colloidal nanoparticle incorporation at 0.5% concentration increased the mean flexural strength in both curing cycles by 7.5 and 4.4%, respectively, when compared with the control group.

Conclusion: The study suggested that the mean flexural strength value of 0.5% silver colloidal nanoparticles in denture base resin was above the value of the control group both in short and long curing cycles, which makes it clinically suitable as a denture base material. However, at 5% concentration, the statistically significant amount of decrease in flexural strength compared with the value of control group both in short and long curing cycles gives it a questionable prognosis.

Clinical Significance: The specimens incorporated with the antimicrobial agent 0.5% silver colloidal nanoparticles and processed by long curing cycles showed significant increase in its flexural strength compared with the control group, which makes it clinically suitable as a denture base material.
View Article and Find Full Text PDF

Download full-text PDF

Source
March 2018

AP-2ε Expression in Developing Retina: Contributing to the Molecular Diversity of Amacrine Cells.

Sci Rep 2018 02 21;8(1):3386. Epub 2018 Feb 21.

Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada.

AP-2 transcription factors play important roles in the regulation of gene expression during development. Four of the five members of the AP-2 family (AP-2α, AP-2β, AP-2γ and AP-2δ) have previously been shown to be expressed in developing retina. Mouse knockouts have revealed roles for AP-2α, AP-2β and AP-2δ in retinal cell specification and function. Here, we show that the fifth member of the AP-2 family, AP-2ε, is also expressed in amacrine cells in developing mammalian and chicken retina. Our data indicate that there are considerably fewer AP-2ε-positive cells in the developing mouse retina compared to AP-2α, AP-2β and AP-2γ-positive cells, suggesting a specialized role for AP-2ε in a subset of amacrine cells. AP-2ε, which is restricted to the GABAergic amacrine lineage, is most commonly co-expressed with AP-2α and AP-2β, especially at early stages of retinal development. Co-expression of AP-2ε and AP-2γ increases with differentiation. Analysis of previously published Drop-seq data from single retinal cells supports co-expression of multiple AP-2s in the same cell. Since AP-2s bind to their target sequences as either homodimers or heterodimers, our work suggests spatially- and temporally-coordinated roles for combinations of AP-2 transcription factors in amacrine cells during retinal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-21822-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821864PMC
February 2018

Functional assessment of von Willebrand factor expression by cancer cells of non-endothelial origin.

Oncotarget 2017 Feb;8(8):13015-13029

Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.

Von Willebrand factor (VWF) is a highly adhesive procoagulant molecule that mediates platelet adhesion to endothelial and subendothelial surfaces. Normally it is expressed exclusively in endothelial cells (ECs) and megakaryocytes. However, a few studies have reported VWF detection in cancer cells of non-endothelial origin, including osteosarcoma. A role for VWF in cancer metastasis has long been postulated but evidence supporting both pro- and anti-metastatic roles for VWF has been presented. We hypothesized that the role of VWF in cancer metastasis is influenced by its cellular origin and that cancer cell acquisition of VWF expression may contribute to enhanced metastatic potential. We demonstrated de novo expression of VWF in glioma as well as osteosarcoma cells. Endothelial monolayer adhesion, transmigration and extravasation capacities of VWF expressing cancer cells were shown to be enhanced compared to non-VWF expressing cells, and were significantly reduced as a result of VWF knock down. VWF expressing cancer cells were also detected in patient tumor samples of varying histologies. Analyses of the mechanism of transcriptional activation of the VWF in cancer cells demonstrated a pattern of trans-activating factor binding and epigenetic modifications consistent overall with that observed in ECs. These results demonstrate that cancer cells of non-endothelial origin can acquire de novo expression of VWF, which can enhance processes, including endothelial and platelet adhesion and extravasation, that contribute to cancer metastasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.14273DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355073PMC
February 2017

Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells.

Cell Signal 2016 08 10;28(8):838-49. Epub 2016 Apr 10.

Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada; Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. Electronic address:

Epithelial-mesenchymal transition (EMT) plays a critical role in the progression of epithelial ovarian cancer (EOC). However, the mechanisms that regulate EMT in EOC are not fully understood. Here, we report that activation of Notch1 induces EMT in EOC cells as evidenced by downregulation of E-cadherin and cytokeratins, upregulation of Slug and Snail, as well as morphological changes. Interestingly, activation of Notch1 increases TGFβ/Smad signaling by upregulating the expression of TGFβ and TGFβ type 1 receptor. Time course experiments demonstrate that inhibition of Notch by DAPT (a γ-secretase inhibitor) decreases TGFβ-induced phosphorylation of receptor Smads at late, but not at early, timepoints. These results suggest that Notch activation plays a role in sustaining TGFβ/Smad signaling in EOC cells. Furthermore, inhibition of Notch by DAPT decreases TGFβ induction of Slug and repression of E-cadherin and knockdown of Notch1 decreases TGFβ-induced repression of E-cadherin, indicating that Notch is required, at least in part, for TGFβ-induced EMT in EOC cells. On the other hand, TGFβ treatment increases the expression of Notch ligand Jagged1 and Notch target gene HES1 in EOC cells. Functionally, the combination of Notch1 activation and TGFβ treatment is more potent in promoting motility and migration of EOC cells than either stimulation alone. Taken together, our results indicate that Notch and TGFβ form a reciprocal positive regulatory loop and cooperatively regulate EMT and promote EOC cell motility and migration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2016.03.016DOI Listing
August 2016

Laminin-5γ-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and is associated with tumor progression, migration, and invasion by modulating signaling of EGFR.

J Clin Endocrinol Metab 2014 Jan 20;99(1):E62-72. Epub 2013 Dec 20.

Cancer Science Institute of Singapore (M.G., D.K., S.J., V.M., W.C., A.S., LW.D., M.X., L.-Z.L., H.Y., H.P.K.), National University of Singapore, and National University Cancer Institute (H.P.K.), National University Hospital, 117599 Singapore; Division of Hematology/Oncology (R.O., S.G., H.P.K.), Cedars-Sinai Medical Center, and Departments of Pathology and Laboratory Medicine (J.W.S., N.B.D.), Medicine (G.D.B), David Geffen School of Medicine, University of California School of Medicine, Los Angeles, California 90059.

Context: Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy having no effective treatment. Laminin subunit-γ-2 (LAMC2) is an epithelial basement membrane protein involved in cell migration and tumor invasion and might represent an ideal target for the development of novel therapeutic approaches for ATC.

Objective: The objective of the investigation was to study the role of LAMC2 in ATC tumorigenesis.

Design: LAMC2 expression was evaluated by RT-PCR, Western blotting, and immunohistochemistry in tumor specimens, adjacent noncancerous tissues, and cell lines. The short hairpin RNA (shRNA) approach was used to investigate the effect of LAMC2 knockdown on the tumorigenesis of ATC.

Results: LAMC2 was highly expressed in ATC samples and cell lines compared with normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed the migration, invasion, and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered the expression of genes associated with migration, invasion, proliferation, and survival. Immunoprecipitation studies showed that LAMC2 bound to epidermal growth factor receptor (EGFR) in the ATC cells. Silencing LAMC2 partially blocked epidermal growth factor-mediated activation of EGFR and its downstream pathway. Interestingly, cetuximab (an EGFR blocking antibody) or EGFR small interfering RNA additively enhanced the antiproliferative activity of the LAMC2 knockdown ATC cells compared with the control cells.

Conclusions: To our knowledge, this is the first report investigating the effect of LAMC2 on cell growth, cell cycle, migration, invasion, and EGFR signaling in ATC cells, suggesting that LAMC2 may be a potential therapeutic target for the treatment of ATC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2013-2994DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879679PMC
January 2014
-->