Publications by authors named "Sadao Eisaka"

2 Publications

  • Page 1 of 1

Rapid and reliable species identification of wild mushrooms by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS).

Anal Chim Acta 2016 Aug 4;934:163-9. Epub 2016 Jun 4.

Department of Food Science and Human Wellness, Rakuno Gakuen University, Midorimachi 582, Bunkyodai, Ebetsu-shi, Hokkaido, 069-8501, Japan. Electronic address:

Mushrooms are a favourite natural food in many countries. However, some wild species cause food poisoning, sometimes lethal, due to misidentification caused by confusing fruiting bodies similar to those of edible species. The morphological inspection of mycelia, spores and fruiting bodies have been traditionally used for the identification of mushrooms. More recently, DNA sequencing analysis has been successfully applied to mushrooms and to many other species. This study focuses on a simpler and more rapid methodology for the identification of wild mushrooms via protein profiling based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). A preliminary study using 6 commercially available cultivated mushrooms suggested that a more reproducible spectrum was obtained from a portion of the cap than from the stem of a fruiting body by the extraction of proteins with a formic acid-acetonitrile mixture (1 + 1). We used 157 wild mushroom-fruiting bodies collected in the centre of Hokkaido from June to November 2014. Sequencing analysis of a portion of the ribosomal RNA gene provided 134 identifications of mushrooms by genus or species, however 23 samples containing 10 unknown species that had lower concordance rate of the nucleotide sequences in a BLAST search (less than 97%) and 13 samples that had unidentifiable poor or mixed sequencing signals remained unknown. MALDI-TOF MS analysis yielded a reproducible spectrum (frequency of matching score ≥ 2.0 was ≥6 spectra from 12 spectra measurements) for 114 of 157 samples. Profiling scores that matched each other within the database gave correct species identification (with scores of ≥2.0) for 110 samples (96%). An in-house prepared database was constructed from 106 independent species, except for overlapping identifications. We used 48 wild mushrooms that were collected in autumn 2015 to validate the in-house database. As a result, 21 mushrooms were identified at the species level with scores ≥2.0 and 5 mushrooms at the genus level with scores ≥1.7, although the signals of 2 mushrooms were insufficient for analysis. The remaining 20 samples were recognized as "unreliable identification" with scores <1.7. Subsequent DNA analysis confirmed that the correct species or genus identifications were achieved by MALDI-TOF MS for the 26 former samples, whereas the 18 mushrooms with poorly matched scores were species that were not included in the database. Thus, the proposed MALDI-TOF MS coupled with our database could be a powerful tool for the rapid and reliable identification of mushrooms; however, continuous updating of the database is necessary to enrich it with more abundant species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2016.05.056DOI Listing
August 2016

Identification of Mushroom Species by Automated rRNA Intergenic Spacer Analysis (ARISA) and Its Application to a Suspected Case of Food Poisoning with Tricholoma ustale.

Shokuhin Eiseigaku Zasshi 2016 ;57(2):37-45

Department of Food Science and Human Wellness, Rakuno Gakuen Uninversity.

Automated rRNA intergenic spacer analysis (ARISA), a method of microbiome analysis, was evaluated for species identification of mushrooms based on the specific fragment sizes. We used 51 wild mushroom-fruiting bodies collected in the centre of Hokkaido and two cultivated mushrooms. Samples were hot-air-dried and DNA were extracted by a beads beating procedure. Sequencing analysis of portions of the rRNA gene (rDNA) provided 33 identifications of mushrooms by genus or species. The results of ARISA identification based on the combination of the fragment sizes corresponding to two inter spacer regions (ITS2 and ITS1) of rDNA within±0.1% accuracy showed that 27 out of the 33 species had specific fragment sizes differentiated from other species. The remaining 6 species formed 3 pairs that showed overlapping fragment sizes. In addition, within-species polymorphisms were observed as 1 bp differences among 32 samples of 13 species. ARISA was applied to investigate a case of suspected food poisoning in which the mushroom was thought to be a toxic Kakishimeji. The morphological identification of the mushroom was ambiguous since the remaining sample lacked a part of the fruiting body. Further, yeast colonies had grown on the surface of the fruiting body during storage. The ARISA fragment size of the mushroom showed 7 bp difference from that of the candidate toxic mushroom. Although ARISA could be a useful tools for estimation of mushroom species, especially in case where the fruiting bodies have deteriorated or been processed, further studies are necessary for reliable identification. For example, it may be necessary to adopt more informative genes which could provide clearer species-specific polymorphisms than the ITS regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3358/shokueishi.57.37DOI Listing
March 2017
-->