Neuron 2015 Feb 5;85(4):703-9. Epub 2015 Feb 5.
Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA. Electronic address:
Inflammation is a prominent feature of CNS injury that heavily influences neuronal survival, yet the signals that initiate and control it remain poorly understood. Here we identify the nuclear alarmin, interleukin (IL)-33, as an important regulator of the innate immune response after CNS injury. IL-33 is expressed widely throughout the healthy brain and is concentrated in white mater due to predominant expression in post-mitotic oligodendrocytes. IL-33 is released immediately after CNS injury from damaged oligodendrocytes, acting on local astrocytes and microglia to induce chemokines critical for monocyte recruitment. Mice lacking IL-33 have impaired recovery after CNS injury, which is associated with reduced myeloid cell infiltrates and decreased induction of M2 genes at the injury site. These results demonstrate a novel molecular mediator contributing to immune cell recruitment to the injured CNS and may lead to new therapeutic insights in CNS injury and neurodegenerative diseases.