Publications by authors named "Sabrina L Jeter-Jones"

4 Publications

  • Page 1 of 1

Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine.

Cell Rep 2021 Nov;37(8):110044

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:

β-hydroxybutyrate (β-OHB) is an essential metabolic energy source during fasting and functions as a chromatin regulator by lysine β-hydroxybutyrylation (Kbhb) modification of the core histones H3 and H4. We report that Kbhb on histone H3 (H3K9bhb) is enriched at proximal promoters of critical gene subsets associated with lipolytic and ketogenic metabolic pathways in small intestine (SI) crypts during fasting. Similar Kbhb enrichment is observed in Lgr5 stem cell-enriched epithelial spheroids treated with β-OHB in vitro. Combinatorial chromatin state analysis reveals that H3K9bhb is associated with active chromatin states and that fasting enriches for an H3K9bhb-H3K27ac signature at active metabolic gene promoters and distal enhancer elements. Intestinal knockout of Hmgcs2 results in marked loss of H3K9bhb-associated loci, suggesting that local production of β-OHB is responsible for chromatin reprogramming within the SI crypt. We conclude that modulation of H3K9bhb in SI crypts is a key gene regulatory event in response to fasting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.110044DOI Listing
November 2021

6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase-2 Regulates TP53-Dependent Paclitaxel Sensitivity in Ovarian and Breast Cancers.

Clin Cancer Res 2019 09 7;25(18):5702-5716. Epub 2019 Aug 7.

Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas.

Purpose: Paclitaxel is an integral component of primary therapy for breast and epithelial ovarian cancers, but less than half of these cancers respond to the drug. Enhancing the response to primary therapy with paclitaxel could improve outcomes for women with both diseases. Twelve kinases that regulate metabolism were depleted in multiple ovarian and breast cancer cell lines to determine whether they regulate sensitivity to paclitaxel in Sulforhodamine B assays. The effects of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 () depletion on cell metabolomics, extracellular acidification rate, nicotinamide adenine dinucleotide phosphate, reactive oxygen species (ROS), and apoptosis were studied in multiple ovarian and breast cancer cell lines. Four breast and ovarian human xenografts and a breast cancer patient-derived xenograft (PDX) were used to examine the knockdown effect of on tumor cell growth .

Results: Knockdown of inhibited clonogenic growth and enhanced paclitaxel sensitivity in ovarian and breast cancer cell lines with wild-type (wt). Silencing significantly inhibited tumor growth and enhanced paclitaxel sensitivity in four xenografts derived from two ovarian and two breast cancer cell lines, and prolonged survival in a triple-negative breast cancer PDX. Transfection of si increased the glycolysis rate, but decreased the flow of intermediates through the pentose-phosphate pathway in cancer cells with wt, decreasing NADPH. ROS accumulated after knockdown, which stimulated Jun N-terminal kinase and p53 phosphorylation, and induced apoptosis that depended upon upregulation of p21 and Puma.

Conclusions: PFKFB2 is a novel target whose inhibition can enhance the effect of paclitaxel-based primary chemotherapy upon ovarian and breast cancers retaining wt.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-3448DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744996PMC
September 2019

High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer.

Nat Commun 2018 11 29;9(1):5079. Epub 2018 Nov 29.

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77054, TX, USA.

Most triple negative breast cancers (TNBCs) are aggressively metastatic with a high degree of intra-tumoral heterogeneity (ITH), but how ITH contributes to metastasis is unclear. Here, clonal dynamics during metastasis were studied in vivo using two patient-derived xenograft (PDX) models established from the treatment-naive primary breast tumors of TNBC patients diagnosed with synchronous metastasis. Genomic sequencing and high-complexity barcode-mediated clonal tracking reveal robust alterations in clonal architecture between primary tumors and corresponding metastases. Polyclonal seeding and maintenance of heterogeneous populations of low-abundance subclones is observed in each metastasis. However, lung, liver, and brain metastases are enriched for an identical population of high-abundance subclones, demonstrating that primary tumor clones harbor properties enabling them to seed and thrive in multiple organ sites. Further, clones that dominate multi-organ metastases share a genomic lineage. Thus, intrinsic properties of rare primary tumor subclones enable the seeding and colonization of metastases in secondary organs in these models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-07406-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6265294PMC
November 2018

A functional genomic screen in vivo identifies CEACAM5 as a clinically relevant driver of breast cancer metastasis.

NPJ Breast Cancer 2018 30;4. Epub 2018 Apr 30.

1Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA.

Tumor cells disseminate early in tumor development making metastasis-prevention strategies difficult. Identifying proteins that promote the outgrowth of disseminated tumor cells may provide opportunities for novel therapeutic strategies. Despite multiple studies demonstrating that the mesenchymal-to-epithelial transition (MET) is critical for metastatic colonization, key regulators that initiate this transition remain unknown. We serially passaged lung metastases from a primary triple negative breast cancer xenograft to the mammary fat pads of recipient mice to enrich for gene expression changes that drive metastasis. An unbiased transcriptomic signature of potential metastatic drivers was generated, and a high throughput gain-of-function screen was performed in vivo to validate candidates. Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a metastatic driver. CEACAM5 overproduction enriched for an epithelial gene expression pattern and facilitated tumor outgrowth at metastatic sites. Tissues from patients with metastatic breast cancer confirmed elevated levels of CEACAM5 in lung metastases relative to breast tumors, and an inverse correlation between CEACAM5 and the mesenchymal marker vimentin was demonstrated. Thus, CEACAM5 facilitates tumor outgrowth at metastatic sites by promoting MET, warranting its investigation as a therapeutic target and biomarker of aggressiveness in breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-018-0062-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928229PMC
April 2018
-->