Publications by authors named "Sabrina Juergensen"

2 Publications

  • Page 1 of 1

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication.

Beilstein J Nanotechnol 2021 6;12:304-318. Epub 2021 Apr 6.

Corelab Correlative Microscopy and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

Focused beams of helium ions are a powerful tool for high-fidelity machining with spatial precision below 5 nm. Achieving such a high patterning precision over large areas and for different materials in a reproducible manner, however, is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o-mat are presented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3762/bjnano.12.25DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042487PMC
April 2021

Deep strong light-matter coupling in plasmonic nanoparticle crystals.

Nature 2020 07 29;583(7818):780-784. Epub 2020 Jul 29.

Department of Physics, Freie Universität Berlin, Berlin, Germany.

In the regime of deep strong light-matter coupling, the coupling strength exceeds the transition energies of the material, fundamentally changing its properties; for example, the ground state of the system contains virtual photons and the internal electromagnetic field gets redistributed by photon self-interaction. So far, no electronic excitation of a material has shown such strong coupling to free-space photons. Here we show that three-dimensional crystals of plasmonic nanoparticles can realize deep strong coupling under ambient conditions, if the particles are ten times larger than the interparticle gaps. The experimental Rabi frequencies (1.9 to 3.3 electronvolts) of face-centred cubic crystals of gold nanoparticles with diameters between 25 and 60 nanometres exceed their plasmon energy by up to 180 per cent. We show that the continuum of photons and plasmons hybridizes into polaritons that violate the rotating-wave approximation. The coupling leads to a breakdown of the Purcell effect-the increase of radiative damping through light-matter coupling-and increases the radiative polariton lifetime. The results indicate that metallic and semiconducting nanoparticles can be used as building blocks for an entire class of materials with extreme light-matter interaction, which will find application in nonlinear optics, the search for cooperative effects and ground states, polariton chemistry and quantum technology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2508-1DOI Listing
July 2020
-->