Publications by authors named "Ryan Sowinski"

9 Publications

  • Page 1 of 1

Dose-Response of Paraxanthine on Cognitive Function: A Double Blind, Placebo Controlled, Crossover Trial.

Nutrients 2021 Dec 15;13(12). Epub 2021 Dec 15.

Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.

Paraxanthine (PXN) is a metabolite of caffeine that has recently been reported to enhance cognition at a dose of 200 mg.

Objective: To determine the acute and short-term (7-day) effects of varying doses of PXN on cognitive function and side effects.

Methods: In a double blind, placebo-controlled, crossover, and counterbalanced manner, 12 healthy male and female volunteers (22.7 ± 4 years, 165 ± 7 cm, 66.5 ± 11 kg, 24.4 ± 3 kg/m) ingested 200 mg of a placebo (PLA), 50 mg of PXN (ENFINITY™, Ingenious Ingredients, L.P.) + 150 mg PLA, 100 mg PXN + 100 mg PLA, or 200 mg of PXN. With each treatment experiment, participants completed side effect questionnaires and donated a fasting blood sample. Participants then performed a series of tests assessing cognition, executive function, memory, and reaction time. Participants then ingested one capsule of PLA or PXN treatments. Participants then completed side effects and cognitive function tests after 1, 2, 3, 4, 5, and 6 h of treatment ingestion. Participants continued ingesting one dose of the assigned treatment daily for 6-days and returned to the lab on day 7 to donate a fasting blood sample, assess side effects, and perform cognitive function tests. Participants repeated the experiment while ingesting remaining treatments in a counterbalanced manner after at least a 7-day washout period until all treatments were assessed.

Results: The Sternberg Task Test (STT) 4-Letter Length Present Reaction Time tended to differ among groups ( = 0.06). Assessment of mean changes from baseline with 95% CI's revealed several significant differences among treatments in Berg-Wisconsin Card Sorting Correct Responses, Preservative Errors (PEBL), and Preservative Errors (PAR Rules). There was also evidence of significant differences among treatments in the Go/No-Go Task tests in Mean Accuracy as well as several time points of increasing complexity among STT variables. Finally, there was evidence from Psychomotor Vigilance Task Test assessment that response time improved over the series of 20 trials assessed as well as during the 6-h experiment in the PXN treatment. Acute and short-term benefits compared to PLA were seen with each dose studied but more consistent effects appeared to be at 100 mg and 200 mg doses. No significant differences were observed among treatments in clinical chemistry panels or the frequency or severity of reported side effects. Results provide evidence that acute ingestion of 100 mg and 200 mg of PXN may affect some measures of cognition, memory, reasoning, and response time as well as help sustain attention. Additionally, that acute and daily ingestion of PXN for 7 days is not associated with any clinically significant side effects.

Conclusions: PXN may serve as an effective nootropic agent at doses as low as 50 mg.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13124478DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8708375PMC
December 2021

Acute Paraxanthine Ingestion Improves Cognition and Short-Term Memory and Helps Sustain Attention in a Double-Blind, Placebo-Controlled, Crossover Trial.

Nutrients 2021 Nov 9;13(11). Epub 2021 Nov 9.

Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.

This study examined the effects of acute paraxanthine (PXN) ingestion on markers of cognition, executive function, and psychomotor vigilance. In a randomized, double blind, placebo-controlled, crossover, and counterbalanced manner, 13 healthy male and female participants were randomly assigned to consume a placebo (PLA) or 200 mg of PXN (ENFINITY™, Ingenious Ingredients, L.P.). Participants completed stimulant sensitivity and side effect questionnaires and then performed the Berg Wisconsin Card Sorting Test (BCST), the Go/No-Go test (GNG), the Sternberg task test (STT), and the psychomotor vigilance task test (PVTT). Participants then ingested one capsule of PLA or PXN treatment. Participants completed side effect and cognitive function tests after 1, 2, 3, 4, 5, and 6 h after ingestion of the supplement. After 7 days, participants repeated the experiment while consuming the alternative treatment. Data were analyzed by general linear model (GLM) univariate analyses with repeated measures using body mass as a covariate, and by assessing mean and percent changes from baseline with 95% confidence intervals (CIs) expressed as means (LL, UL). PXN decreased BCST errors (PXN -4.7 [-0.2, -9.20], = 0.04; PXN -17.5% [-36.1, 1.0], = 0.06) and perseverative errors (PXN -2.2 [-4.2, -0.2], = 0.03; PXN -32.8% [-64.4, 1.2], = 0.04) at hour 6. GNG analysis revealed some evidence that PXN ingestion better maintained mean accuracy over time and Condition R Round 2 response time (e.g., PXN -25.1 [-52.2, 1.9] ms, = 0.07 faster than PLA at 1 h), suggesting better sustained attention. PXN ingestion improved STT two-letter length absent and present reaction times over time as well as improving six-letter length absent reaction time after 2 h (PXN -86.5 ms [-165, -7.2], = 0.03; PXN -9.0% [-18.1, 0.2], = 0.05), suggesting that PXN enhanced the ability to store and retrieve random information of increasing complexity from short-term memory. A moderate treatment x time effect size (η = 0.08) was observed in PVTT, where PXN sustained vigilance during Trial 2 after 2 h (PXN 840 ms [103, 1576], = 0.03) and 4 h (PXN 1466 ms [579, 2353], = 0.002) compared to PL. As testing progressed, the response time improved during the 20 trials and over the course of the 6 h experiment in the PXN treatment, whereas it significantly increased in the PL group. The results suggest that acute PXN ingestion (200 mg) may affect some measures of short-term memory, reasoning, and response time to cognitive challenges and help sustain attention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13113980DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622427PMC
November 2021

Effects of Inositol-Enhanced Bonded Arginine Silicate Ingestion on Cognitive and Executive Function in Gamers.

Nutrients 2021 Oct 24;13(11). Epub 2021 Oct 24.

Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA.

Inositol stabilized arginine silicate (ASI) ingestion has been reported to increase nitric oxide levels while inositol (I) has been reported to enhance neurotransmission. The current study examined whether acute ASI + I (Inositol-enhanced bonded arginine silicate) ingestion affects cognitive function in e-sport gamers. In a double blind, randomized, placebo controlled, and crossover trial, 26 healthy male (n = 18) and female (n = 8) experienced gamers (23 ± 5 years, 171 ± 11 cm, 71.1 ± 14 kg, 20.7 ± 3.5 kg/m) were randomly assigned to consume 1600 mg of ASI + I (nooLVL, Nutrition 21) or 1600 mg of a maltodextrin placebo (PLA). Prior to testing, participants recorded their diet, refrained from consuming atypical amounts of stimulants and foods high in arginine and nitrates, and fasted for 8 h. During testing sessions, participants completed stimulant sensitivity questionnaires and performed cognitive function tests (i.e., Berg-Wisconsin Card Sorting task test, Go/No-Go test, Sternberg Task Test, Psychomotor Vigilance Task Test, Cambridge Brain Sciences Reasoning and Concentration test) and a light reaction test. Participants then ingested treatments in a randomized manner. Fifteen minutes following ingestion, participants repeated tests (Pre-Game). Participants then played their favorite video game for 1-h and repeated the battery of tests (Post-Game). Participants observed a 7-14-day washout period and then replicated the study with the alternative treatment. Data were analyzed by General Linear Model (GLM) univariate analyses with repeated measures using weight as a covariate, paired -tests (not adjusted to weight), and mean changes from baseline with 95% Confidence Intervals (CI). Pairwise comparison revealed that there was a significant improvement in Sternberg Mean Present Reaction Time (ASI + I vs. PLA; < 0.05). In Post-Game assessments, 4-letter Absent Reaction Time ( < 0.05), 6-letter Present Reaction Time ( < 0.01), 6-letter Absent Reaction Time ( < 0.01), Mean Present Reaction Time ( < 0.02), and Mean Absent Reaction Time ( < 0.03) were improved with ASI + I vs. PLA. There was a non-significant trend in Pre-Game Sternberg 4-letter Present Reaction time in ASI + I vs. PLA ( < 0.07). ASI + I ingestion better maintained changes in Go/No-Go Mean Accuracy and Reaction Time, Psychomotor Vigilance Task Reaction Time, and Cambridge Post-Game Visio-spatial Processing and Planning. Results provide evidence that ASI + I ingestion prior to playing video games may enhance some measures of short-term and working memory, reaction time, reasoning, and concentration in experienced gamers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu13113758DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8618773PMC
October 2021

Effects of phenylbutazone alone or in combination with a nutritional therapeutic on gastric ulcers, intestinal permeability, and fecal microbiota in horses.

J Vet Intern Med 2021 Mar 3;35(2):1121-1130. Epub 2021 Mar 3.

Department of Animal Science, College of Agriculture & Life Sciences Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

Background: Gastrointestinal (GI) injury and dysbiosis are adverse events associated with nonsteroidal anti-inflammatory drug (NSAID) use in horses. Phenylbutazone has been shown to alter GI barrier function both in vitro and ex vivo, but its effects on barrier function have not been assessed in vivo. In addition, the ability of nutritional therapeutics to prevent these changes is not known.

Objective: Our objectives were to determine whether (a) phenylbutazone affected barrier function in vivo and (b) if phenylbutazone-induced GI injury could be ameliorated by the use of a nutritional therapeutic.

Animals: Thirty healthy horses were randomly assigned to 3 groups (n = 10 per group): control, phenylbutazone, or phenylbutazone plus nutritional therapeutic.

Methods: This study was conducted as a blinded, randomized block design. All horses were managed identically throughout the study period. Samples were collected throughout the study period to monitor fecal microbiota changes and gastric ulcers before and after treatment. Quantification of the bacterial 16S rRNA gene in blood was used as a marker of intestinal permeability.

Results: Phenylbutazone increased amounts of bacterial 16S rDNA in circulation 3.02-fold (95% confidence interval [CI], 0.1.89-4.17), increased gastric ulceration score by a mean of 1.1 grade (P = .02), and induced specific changes in the microbiota, including loss of Pseudobutyrivibrio of family Lachnospiraceae. These changes were attenuated by nutritional treatment.

Conclusions And Clinical Importance: Collectively, these findings suggest that phenylbutazone induces GI injury, including impaired barrier function, and that nutritional treatment could attenuate these changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jvim.16093DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995434PMC
March 2021

An Examination of a Novel Weight Loss Supplement on Anthropometry and Indices of Cardiovascular Disease Risk.

J Diet Suppl 2021 21;18(5):478-506. Epub 2020 Jul 21.

Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA.

Purpose: This study examined whether adding (DG; 300 mg/d) to thermogenic supplements with (DG + C) and without (DG) caffeine and other nutrients affects weight loss, changes in body composition, and/or markers of health.

Methods: Sixty-eight participants (female, 54%) were grouped in a double-blind, parallel, stratified random, placebo-controlled manner to supplement their diet with a placebo, DG, or DG + C for 12 weeks while maintaining their normal diet and physical activity. Diet, physical activity, body weight, body composition, anthropometric measures, resting energy expenditure, fasting blood samples, and questionnaires were obtained at 0, 4, 8, and 12 weeks and analyzed using general linear models with repeated measures. Data are reported as mean (±SD) and change from baseline (mean, 95% confidence interval) for weeks 4, 8, and 12, respectively, with values showing changes from baseline.

Results: DG treatment promoted significant but minor reductions in fat mass (-0.56 [-1.02, -0.14],  = 0.01; -0.63 [-1.23, -0.02],  = 0.04; -0.71 [-1.47, 0.09] kg,  = 0.08) and percent body fat (-0.46 [-0.96, -0.04],  = 0.07; -0.63 [-1.16, -0.10],  = 0.02; -0.78 [-1.45, 0.07] %,  = 0.03). There was some evidence that DG + C increased resting energy expenditure, decreased hunger, increased satiety, and improved sleep quality (diminished in DG + C). No other significant effects were observed.

Conclusions: Ingestion of thermogenic supplements containing DG (300 mg/d) with and without caffeine and other nutrients in overweight but otherwise healthy participants who did not alter diet or physical activity promoted clinically insignificant changes in body weight and composition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/19390211.2020.1786207DOI Listing
October 2021

Comparison of ingesting a food bar containing whey protein and isomalto-oligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: an open label, randomized, counterbalanced, crossover pilot study.

J Int Soc Sports Nutr 2019 Aug 13;16(1):34. Epub 2019 Aug 13.

Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.

Background: We previously reported that consuming a food bar (FB) containing whey protein and the plant fiber isomalto-oligosaccharides [IMO] had a lower glycemic (GI) but similar insulinemic response as a high GI carbohydrate. Therefore, we hypothesized that ingestion of this FB before, during, and following intense exercise would better maintain glucose homeostasis and performance while hastening recovery in comparison to the common practice of ingesting carbohydrate alone.

Methods: Twelve resistance-trained males participated in an open label, randomized, counterbalanced, crossover trial with a 7-d washout period. Participants consumed a carbohydrate matched dextrose comparitor (CHO) or a FB containing 20 g of whey, 25 g of IMO, and 7 g of fat 30-min before, mid-way, and following intense exercise. Participants performed 11 resistance-exercises (3 sets of 10 repetitions at 70% of 1RM) followed by agility and sprint conditioning drills for time. Participants donated blood to assess catabolic and inflammatory markers, performed isokinetic strength tests, and rated perceptions of muscle soreness, hypoglycemia before, and following exercise and after 48 h of recovery. Data were analyzed using general linear models (GLM) for repeated measures and mean changes from baseline with 95% confidence intervals (CI) with a one-way analysis of variance. Data are reported as mean change from baseline with 95% CI.

Results: GLM analysis demonstrated that blood glucose was significantly higher 30-min post-ingestion for CHO (3.1 [2.0, 4.3 mmol/L,] and FB (0.8 [0.2, 1.5, mmol/L, p = 0.001) while the post-exercise ratio of insulin to glucose was greater with FB (CHO 0.04 [0.00, 0.08], FB 0.11 [0.07, 0.15], p = 0.013, η = 0.25). GLM analysis revealed no significant interaction effects between treatments in lifting volume of each resistance-exercise or total lifting volume. However, analysis of mean changes from baseline with 95% CI's revealed that leg press lifting volume (CHO -130.79 [- 235.02, - 26.55]; FB -7.94 [- 112.17, 96.30] kg, p = 0.09, η = 0.12) and total lifting volume (CHO -198.26 [- 320.1, - 76.4], FB -81.7 [- 203.6, 40.1] kg, p = 0.175, η = 0.08) from set 1 to 3 was significantly reduced for CHO, but not for the FB. No significant interaction effects were observed in ratings of muscle soreness. However, mean change analysis revealed that ratings of soreness of the distal vastus medialis significantly increased from baseline with CHO while being unchanged with FB (CHO 1.88 [0.60, 3.17]; FB 0.29 [- 0.99, 1.57] cm, p = 0.083, η = 0.13). No significant GLM interaction or mean change analysis effects were seen between treatments in sprint performance, isokinetic strength, markers of catabolism, stress and sex hormones, or inflammatory markers.

Conclusion: Pilot study results provide some evidence that ingestion of this FB can positively affect glucose homeostasis, help maintain workout performance, and lessen perceptions of muscle soreness.

Trial Registration: clinicaltrials.gov, # NCT03704337 . Retrospectively registered 12, July 2018.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12970-019-0301-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693099PMC
August 2019

Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation.

Nutrients 2017 Dec 15;9(12). Epub 2017 Dec 15.

Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.

In a double-blind, crossover, randomized and placebo-controlled trial; 28 men and women ingested a placebo (PLA), 3 g of creatine nitrate (CNL), and 6 g of creatine nitrate (CNH) for 6 days. Participants repeated the experiment with the alternate supplements after a 7-day washout. Hemodynamic responses to a postural challenge, fasting blood samples, and bench press, leg press, and cycling time trial performance and recovery were assessed. Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM). No significant differences were found among treatments for hemodynamic responses, clinical blood markers or self-reported side effects. After 5 days of supplementation, one repetition maximum (1RM) bench press improved significantly for CNH (mean change, 95% CI; 6.1 [3.5, 8.7] kg) but not PLA (0.7 [-1.6, 3.0] kg or CNL (2.0 [-0.9, 4.9] kg, CNH, = 0.01). CNH participants also tended to experience an attenuated loss in 1RM strength during the recovery performance tests following supplementation on day 5 (PLA: -9.3 [-13.5, -5.0], CNL: -9.3 [-13.5, -5.1], CNH: -3.9 [-6.6, -1.2] kg, = 0.07). After 5 days, pre-supplementation 1RM leg press values increased significantly, only with CNH (24.7 [8.8, 40.6] kg, but not PLA (13.9 [-15.7, 43.5] or CNL (14.6 [-0.5, 29.7]). Further, post-supplementation 1RM leg press recovery did not decrease significantly for CNH (-13.3 [-31.9, 5.3], but did for PLA (-30.5 [-53.4, -7.7] and CNL (-29.0 [-49.5, -8.4]). CNL treatment promoted an increase in bench press repetitions at 70% of 1RM during recovery on day 5 (PLA: 0.4 [-0.8, 1.6], CNL: 0.9 [0.35, 1.5], CNH: 0.5 [-0.2, 0.3], = 0.56), greater leg press endurance prior to supplementation on day 5 (PLA: -0.2 [-1.6, 1.2], CNL: 0.9 [0.2, 1.6], CNH: 0.2 [-0.5, 0.9], = 0.25) and greater leg press endurance during recovery on day 5 (PLA: -0.03 [-1.2, 1.1], CNL: 1.1 [0.3, 1.9], CNH: 0.4 [-0.4, 1.2], = 0.23). Cycling time trial performance (4 km) was not affected. Results indicate that creatine nitrate supplementation, up to a 6 g dose, for 6 days, appears to be safe and provide some ergogenic benefit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu9121359DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748809PMC
December 2017

Short-Term Effects of a Ready-to-Drink Pre-Workout Beverage on Exercise Performance and Recovery.

Nutrients 2017 Aug 1;9(8). Epub 2017 Aug 1.

Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA.

In a double-blind, randomized and crossover manner, 25 resistance-trained participants ingested a placebo (PLA) beverage containing 12 g of dextrose and a beverage (RTD) containing caffeine (200 mg), β-alanine (2.1 g), arginine nitrate (1.3 g), niacin (65 mg), folic acid (325 mcg), and Vitamin B12 (45 mcg) for 7-days, separated by a 7-10-day. On day 1 and 6, participants donated a fasting blood sample and completed a side-effects questionnaire (SEQ), hemodynamic challenge test, 1-RM and muscular endurance tests (3 × 10 repetitions at 70% of 1-RM with the last set to failure on the bench press (BP) and leg press (LP)) followed by ingesting the assigned beverage. After 15 min, participants repeated the hemodynamic test, 1-RM tests, and performed a repetition to fatigue (RtF) test at 70% of 1-RM, followed by completing the SEQ. On day 2 and 7, participants donated a fasting blood sample, completed the SEQ, ingested the assigned beverage, rested 30 min, and performed a 4 km cycling time-trial (TT). Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM), adjusted for gender and relative caffeine intake. Data are presented as mean change (95% CI). An overall multivariate time × treatment interaction was observed on strength performance variables ( = 0.01). Acute RTD ingestion better maintained LP 1-RM (PLA: -0.285 (-0.49, -0.08); RTD: 0.23 (-0.50, 0.18) kg/kg, = 0.30); increased LP RtF (PLA: -2.60 (-6.8, 1.6); RTD: 4.00 (-0.2, 8.2) repetitions, = 0.031); increased BP lifting volume (PLA: 0.001 (-0.13, 0.16); RTD: 0.03 (0.02, 0.04) kg/kg, = 0.007); and, increased total lifting volume (PLA: -13.12 (-36.9, 10.5); RTD: 21.06 (-2.7, 44.8) kg/kg, = 0.046). Short-term RTD ingestion maintained baseline LP 1-RM (PLA: -0.412 (-0.08, -0.07); RTD: 0.16 (-0.50, 0.18) kg/kg, = 0.30); LP RtF (PLA: 0.12 (-3.0, 3.2); RTD: 3.6 (0.5, 6.7) repetitions, = 0.116); and, LP lifting volume (PLA: 3.64 (-8.8, 16.1); RTD: 16.25 (3.8, 28.7) kg/kg, = 0.157) to a greater degree than PLA. No significant differences were observed between treatments in cycling TT performance, hemodynamic assessment, fasting blood panels, or self-reported side effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu9080823DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579616PMC
August 2017

The decline of cross-species intersensory perception in human infants: underlying mechanisms and its developmental persistence.

Brain Res 2008 Nov 12;1242:291-302. Epub 2008 Apr 12.

Department of Psychology, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA.

The current study investigated the mechanisms underlying the developmental decline in cross-species intersensory matching first reported by Lewkowicz and Ghazanfar [Lewkowicz, D.J., & Ghazanfar, A.A., (2006). The decline of cross-species intersensory perception in human infants. Proc. Natl. Acad. Sci. U. S. A. 103(17), 6771-6774] and whether the decline persists into later development. Experiment 1 investigated whether infants can match monkey vocalizations to asynchronously presented faces and found that neither 4-6 nor 8-10 month-old infants did. Experiment 1 also assessed whether a visual processing deficit may account for the developmental decline in cross-species matching and indicated that it does not because both age groups discriminated silent monkey calls. Experiment 2 investigated whether an auditory processing deficit may account for the decline and indicated that it does not because 8-10 month-old infants discriminated the acoustic versions of the calls. Finally, Experiment 3 asked whether the developmental decline persists into later development by testing cross-species intersensory matching in 12- and 18-month-old infants and showed that it does because neither age group made intersensory matches. Together, these results bolster prior evidence of a decline in cross-species intersensory integration in early human development and shed new light on the mechanisms underlying it.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2008.03.084DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612707PMC
November 2008
-->