Publications by authors named "Ruud Steenbeek"

4 Publications

  • Page 1 of 1

Changes in drug use in European cities during early COVID-19 lockdowns - A snapshot from wastewater analysis.

Environ Int 2021 Mar 26;153:106540. Epub 2021 Mar 26.

Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands. Electronic address:

The COVID-19 outbreak has forced countries to introduce severe restrictive measures to contain its spread. In particular, physical distancing and restriction of movement have had important consequences on human behaviour and potentially also on illicit drug use and supply. These changes can be associated with additional risks for users, in particular due to reduced access to prevention and harm reduction activities. Furthermore, there have been limitations in the amount of data about drug use which can be collected due to restrictions. To goal of this study was to obtain information about potential changes in illicit drug use impacted by COVID-19 restrictions. Wastewater samples were collected in seven cities in the Netherlands, Belgium, Spain and Italy at the beginning of lockdowns (March-May 2020). Using previously established and validated methods, levels of amphetamine (AMP), methamphetamine (METH), MDMA, benzoylecgonine (BE, the main metabolite of cocaine) and 11-nor-9-carboxy-Δ-tetrahydrocannabinol (THC-COOH, main metabolite of tetrahydrocannabinol (THC)) were measured and compared with findings from previous years. Important differences in levels of consumed drugs were observed across the considered countries. Whilst for some substances and locations, marked decreases in consumption could be observed (e.g., 50% decrease in MDMA levels compared to previous years). In some cases, similar or even higher levels compared to previous years could be found. Changes in weekly patterns were also observed, however these were not clearly defined for all locations and/or substances. Findings confirm that the current situation is highly heterogeneous and that it remains very difficult to explain and/or predict the effect that the present pandemic has on illicit drug use and availability. However, given the current difficulty in obtaining data due to restrictions, wastewater analysis can provide relevant information about the situation at the local level, which would be hard to obtain otherwise.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.106540DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997602PMC
March 2021

International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period.

Water Res 2021 Apr 3;193:116891. Epub 2021 Feb 3.

Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia. Electronic address:

There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.116891DOI Listing
April 2021

Multi-approach assessment for the evaluation of spatio-temporal estrogenicity in fish from effluent-dominated surface waters under low instream flow.

Environ Pollut 2020 Oct 27;265(Pt B):115122. Epub 2020 Jun 27.

Department of Environmental Science and Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA. Electronic address:

Current practices employed by most wastewater treatment plants (WWTP) are unable to completely remove endocrine disrupting compounds (EDCs) from reclaimed waters, and consistently discharge these substances to receiving systems. Effluent-dominated and dependent surface waters, especially during low instream flows, can increase exposure and risks to aquatic organisms due to adverse biological effects associated with EDCs. Given the ecological implications that may arise from exposure to such compounds, the present a multi-approach study examined spatio-temporal estrogenic potential of wastewater effluent to fish in East Canyon Creek (ECC), Utah, USA, a unique urban river with instream flows seasonally influenced by snowmelt. Juvenile rainbow trout (Oncorhynchus mykiss) were caged at different upstream and downstream sites from an effluent discharge during the summer and fall seasons. In the summer, where approximately 50% of the streamflow was dominated by effluent, fish from the upstream and a downstream site, located 13 miles away from the effluent discharge, presented significantly elevated concentrations of plasma vitellogenin (VTG). Similarly, significantly high 17β-estradiol to 11-ketotestosterone ratios were measured in the summer across all sites and time points, compared to the fall. In the laboratory, juvenile fish and primary hepatocytes were exposed to concentrated effluent and surface water samples. Quantification of VTG, although in significantly lower levels, resembled response patterns observed in fish from the field study. Furthermore, analytical quantification of common EDCs in wastewater revealed the presence of estriol and estrone, though these did not appear to be related to the observed biological responses, as these were more significant in sites were no EDCs were detected. These combined observations suggest potential estrogenicity for fish in ECC under continuous exposures and highlight the advantages of following weight-of-evidence (WoE) approaches for environmental monitoring, as targeted analytically-based assessments may or may not support the identification of causative contaminants for adverse biological effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.115122DOI Listing
October 2020

Pharmaceutical uptake kinetics in rainbow trout: In situ bioaccumulation in an effluent-dominated river influenced by snowmelt.

Sci Total Environ 2020 Sep 22;736:139603. Epub 2020 May 22.

Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China. Electronic address:

Whether seasonal instream flow dynamics influence bioaccumulation of pharmaceuticals by fish is not well understood, specifically for urban lotic systems in semi-arid regions when flows are influenced by snowmelt. We examined uptake of select pharmaceuticals in rainbow trout (Oncorhynchus mykiss) caged in situ upstream and at incremental distances downstream (0.1, 1.4, 13 miles) from a municipal effluent discharge to East Canyon Creek in Park City, Utah, USA during summer and fall of 2018. Fish were sampled over 7-d to examine if uptake occurred, and to define uptake kinetics. Water and fish tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Several pharmaceuticals were consistently detected in water, fish tissue and plasma, including carbamazepine, diphenhydramine, diltiazem, and fluoxetine. Pharmaceutical levels in water ranged up to 151 ng/L for carbamazepine, whereas the effluent tracer sucralose was consistently observed at low μg/L levels. During both summer and fall experiments at each of three downstream locations from effluent discharge, rainbow trout rapidly accumulated these pharmaceuticals; tissue levels reached steady state conditions within 24-96 h. Spatial and temporal differences for pharmaceutical levels in rainbow trout directly corresponded with surface water exposure concentrations, and uptake kinetics for individual pharmaceuticals did not vary among sites or seasons. Such observations are consistent with recent laboratory bioconcentration studies, which collectively indicate inhalational exposure from water governs rapid accumulation of ionizable base pharmaceuticals by fish in inland surface waters.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139603DOI Listing
September 2020