Publications by authors named "Rutao Liu"

193 Publications

Discrepancy of apoptotic events in mouse hepatocytes and catalase performance: Size-dependent cellular and molecular toxicity of ultrafine carbon black.

J Hazard Mater 2021 Aug 5;421:126781. Epub 2021 Aug 5.

School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

The diversification of the production process and application of ultrafine carbon black (UFCB), one of the nanomaterials, make the difference in particle sizes that exposed to environment. Currently, few size-dependent toxicity studies of UFCB pay attention to targeted effects on detoxification organs. And there is a research gap in the size-dependent molecular toxicity of UFCB. Based on this, mouse hepatocytes and catalase (CAT) were used as targeted receptors for UFCB size-dependent cellular and molecular toxicity studies. Results indicate that UFCB induced higher ROS and lipid peroxidation levels. And the cell viability decreased to 22.5%, which is sharp contrast to UFCB (45.3%) and UFCB (55.1%). Mitochondrial dysfunction and a 25.2% early apoptosis rate are the further manifestation of the stronger cytotoxicity of UFCB. At the molecular level, the exposure of UFCB with better dispersity resulted in more significant changes in the CAT backbone and secondary structure, fluorescence sensitization and enzyme function inhibition. The combined experiments show that the cellular uptake and dispersity of UFCB are the dominating factors for the discrepancy in size-dependent cellular and molecular toxicity, respectively. This study provides a theoretical basis for the necessary circumvention and substitution of UFCB in engineering applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126781DOI Listing
August 2021

Probing the biological toxicity of pyrene to the earthworm Eisenia fetida and the toxicity pathways of oxidative damage: A systematic study at the animal and molecular levels.

Environ Pollut 2021 Aug 10;289:117936. Epub 2021 Aug 10.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.

Pyrene (Pyr), a widely used tetracyclic aromatic hydrocarbon, enters soil in large quantities and causes environmental pollution due to its production and mining. In order to systematically study the biotoxicity of pyrene to model organisms Eisenia fetida in soil, experiments were carried out from four dimensions: animal, tissue, cell and molecule. Experimental results proved that the mortality rate increased with increasing concentration and time of exposure to pyrene, while the mean body weight and spawning rate decreased. Meanwhile, when the pyrene concentration reached 900 mg/kg, the seminal vesicle and longitudinal muscle of the earthworm showed obvious atrophy. Experimental results at the cellular level showed that pyrene induced cell membrane damage and Ca influx triggered mitochondrial membrane depolarization and a surge in ROS levels. Oxidative stress causes damage to proteins and lipids and DNA inside cells. When the mortality rate was 91.67 %, the Olive Tail Movement (OTM) of the comet experiment reached 15. The results of molecular level tests showed that pyrene inhibited the activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) mainly by changing the microenvironment and secondary structure of amino acid Tyr 108. The weakened function of direct antioxidant enzymes may be the root cause of the excessive increase of reactive oxygen species (ROS) in cells. The systematic approach used in this study enriches the network of toxic pathways in toxicological studies, and basic data on the biological toxicity of pyrene can provide support for future soil contamination detection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117936DOI Listing
August 2021

The combination of ultrafine carbon black and lead provokes cytotoxicity and apoptosis in mice lung fibroblasts through oxidative stress-activated mitochondrial pathways.

Sci Total Environ 2021 Aug 2;799:149420. Epub 2021 Aug 2.

School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

Ultrafine particulates (UFPs) are considered one of the most hazardous of all air pollutants, which can be directly inhaled into the human body and cause direct damage to lung tissues. Lung fibroblasts (LF) play an important role in the structure and function of lung and there are few studies on primary cells at present. So, the article focuses on LF as the research objective and ultrafine carbon black (UFCB) and Pb-UFCB (loaded with lead) as a representative of UFPs to study the effect on LF. The results showed that UFCB and Pb-UFCB inhibited LF proliferation due to cell cycle arrested in the S phase, and induced apoptosis. Additionally, UFCB or Pb-UFCB could induce oxidative stress manifested as the increase of intracellular reactive oxygen species. The redox imbalance was further confirmed by measuring the changes of related enzymes, including the activity of superoxide dismutase and catalase and the level of reduced glutathione and malondialdehyde in cells. Moreover, the elevated lactate dehydrogenase in the culture medium indicated that cell membrane had been injured. And mitochondrial function was impaired by the imbalance of ATP synthesis and hydrolysis. In summary, both induced oxidative stress, which is the main driving force of LF early apoptosis, disruption of cell membrane integrity and mitochondrial function. Here, we provide a meaningful and challenging subject to explore the toxic effect and mechanism between UFPs and lung tissue at cellular levels, and theoretical basics for the possible changes of lung tissue function in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149420DOI Listing
August 2021

Organism and molecular-level responses of superoxide dismutase interaction with 2-pentanone.

Chemosphere 2021 Jul 28;286(Pt 2):131707. Epub 2021 Jul 28.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China. Electronic address:

2-Pentanone is an excellent organic solvent and extractant, which is widely used in industrial production. 2-Pentanone is harmful to soil organisms when it enters the soil. However, current studies have not clarified the response of the antioxidant enzyme superoxide dismutase (SOD) to 2-Pentanone and its mechanism. In this study, the response of earthworm antioxidant enzyme SOD to 2-Pentanone and its molecular mechanism was investigated at organism molecular levels. The results showed that the SOD activity of earthworms under 2-Pentanone stress was significantly inhibited, and the inability of superoxide anion radicals (·O) to be scavenged in time might be one of the reasons for the increase of lipid peroxidation. Under 2-Pentanone exposure conditions, catalase (CAT), an antioxidant enzyme closely related to SOD, and the total antioxidant capacity (T-AOC) of earthworms were activated to resist oxidative damage. On the other hand, the observation of earthworm microstructure provided evidence of a direct risk of 2-Pentanone on earthworm body wall tissues. Molecular-level assays have shown that 2-pentanone altered the secondary structure of SOD, which further led to the loosening of the SOD backbone structure and the extension of the polypeptide chain. On the other hand, 2-pentanone quenched the endogenous fluorescence of SOD in the form of static quenching and formed the 2-pentanone/SOD complex. Molecular simulation results suggested that 2-pentanone tended to bind on the surface of SOD rather than close to the active site, and it is speculated that the alteration of SOD structure is the key reason for the change in its activity. This study enriches the toxicological data of 2-Pentanone on soil organisms, thus responding to the current concerns about its ecological risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131707DOI Listing
July 2021

Characterizing the binding interactions of sodiumbenzoatewithlysozymeat the molecular level using multi-spectroscopy, ITC and modeling methods.

Spectrochim Acta A Mol Biomol Spectrosc 2021 Dec 22;263:120213. Epub 2021 Jul 22.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China. Electronic address:

In this paper, we mainly study the interaction mechanism between food additives and antioxidant enzymes. Spectral methods were used to study the effect of sodium benzoate on the structure and function of lysozyme at the molecular level. Multi-spectroscopic results showed that sodium benzoate statically quenched the intrinsic fluorescence of lysozyme, formed complexes with lysozyme, increased the polarity of the aromatic amino acid, effected the molecular skeleton of lysozyme and stretched the secondary structure. The molecular docking and isothermal titration calorimetry (ITC) results showed that sodium benzoate entered the depression of the surface of lysozyme molecule both through hydrophobic interaction and hydrogen bond. Sodium benzoate was linked to tryptophan (Trp-63) by a hydrogen bond with a bond length of 2.48 Å. Thermodynamic studies showed that the combination was spontaneous, as the values of the enthalpy change (ΔH) and the entropy change (ΔS) were calculated to be 12.558 kJmol and 25 kJmolk, respectively. Enzyme activity determination showed that Sodium benzoate increased lysozyme activity by 22.31%. This study can provide experimental support for evaluating the edible safety of sodium benzoate.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120213DOI Listing
December 2021

Toxic effects of acetone, 2-pentanone, and 2-hexanone on physiological indices of wheat (Triticum aestivum L.) germination and seedlings.

Environ Sci Pollut Res Int 2021 Jul 26. Epub 2021 Jul 26.

School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.

Petroleum hydrocarbons are important characteristic pollutants in the process of oil exploitation in the Yellow River Delta (China), and they cause a potential hazard to the surrounding ecological environment. The research on eco-toxicological effects of petroleum-derived products still needs to be studied in depth. This paper describes the physiological indices of wheat (Triticum aestivum L.) seeds and seedlings under independent stresses of acetone, 2-pentanone, and 2-hexanone to determine the toxicological effects of ketones derived from petroleum products on typical crops. The experimental results indicated that ketones with concentrations lower than 0.4 mg·cm and 800 mg·kg the germination of wheat seeds and the growth of seedlings were promoted to 113.32-127.27% and 105.41-126.39%, respectively, thus exhibiting low-dose excitatory effects. However, when the concentration was higher than 0.4 mg·cm and 800 mg·kg, germination and seedlings' growth were significantly reduced to 7.14-2.12% and 35.09-13.33%, respectively. At the same time, acetone had a greater impact on the growth of wheat seed roots, the malondialdehyde (MDA), and chlorophyll contents in leaf tissues. The low concentration of acetone had a significant promoting effect on the activity of α-amylase in wheat seeds. 2-Pentanone reduced the electrical conductivity of wheat seed extract, and it significantly promoted the catalase (CAT) activity at low concentrations. 2-Hexanone had a strong inhibitory effect on wheat germination and growth. This study provided new research results to determine the toxic effects of petroleum-derived products and provided a basis for the environmental management of such substances.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15496-9DOI Listing
July 2021

Toxic effects of benzovindiflupyr, a new SDHI-type fungicide on earthworms (Eisenia fetida).

Environ Sci Pollut Res Int 2021 Jul 2. Epub 2021 Jul 2.

School of Environmental Science and Engineering, America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.

Benzovindiflupyr has received increasing attention as a new novel succinate dehydrogenase inhibitor (SDHI)-type fungicide. Nonetheless, its traces remaining in soil potentially trigger an ecotoxicological threat to soil organisms including earthworms. This paper evaluates the eco-toxicity of different benzovindiflupyr doses (0.1, 1, 5, and 10 mg kg) on earthworms (Eisenia fetida) after long-term exposure. Consequently, benzovindiflupyr at higher doses significantly inhibited the activities of respiratory chain complex II and succinate dehydrogenase (SDH) in E. fetida. Besides, the reactive oxygen species (ROS) and lipid peroxidation (LPO) were significantly induced in earthworms when treated with this fungicide. After benzovindiflupyr exposure, activities of antioxidant enzymes including catalase, peroxidase, and superoxide dismutase were activated. However, glutathione S-transferase activity in E. fetida was initially induced then inhibited in earthworms after treatment. Furthermore, benzovindiflupyr exposure induced the protein carbonylation (PCO) level in cells indicating oxidative damage to the cellular protein. Due to the destruction of the normal function in the coelomocytes, the phagocytic activity was initially activated, then inhibited when earthworms were treated at 5 and 10 mg kg concentrations. Additionally, DNA damage was induced (larger olive tail moment (OTM) values) with the increase of benzovindiflupyr doses and exposure time. The weight was significantly decreased after benzovindiflupyr exposure on days 21 and 28. Benzovindiflupyr at higher doses significantly decreased the reproduction (number of cocoons and juveniles) of E. fetida. These findings reveal that benzovindiflupyr potentially induces a potential toxicological risk to earthworms when applied in the mentioned above dosages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15207-4DOI Listing
July 2021

Toxic mechanism on phenanthrene-induced cytotoxicity, oxidative stress and activity changes of superoxide dismutase and catalase in earthworm (Eisenia foetida): A combined molecular and cellular study.

J Hazard Mater 2021 09 9;418:126302. Epub 2021 Jun 9.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

Phenanthrene (PHE) is an important organic compound, which is widespread in the soil environment and exhibits potential threats to soil organisms. Toxic effects of PHE to earthworms have been extensively studied, but toxic mechanisms on PHE-induced cytotoxicity and oxidative stress at the molecular and cellular levels have not been reported yet. Therefore, we explored the cytotoxicity and oxidative stress caused by PHE in earthworm coelomocytes and the interaction mechanism between PHE and the major antioxidant enzymes SOD/CAT. It was shown that high-dose PHE exposure induced the intracellular reactive oxygen species (ROS) generation, mediated lipid peroxidation, reduced total antioxidant capacity (T-AOC) in coelomocytes, and triggered oxidative stress, thus resulted in a strong cytotoxicity at higher concentrations (0.6-1.0 mg/L). The intracellular SOD/CAT activity in cells after PHE exposure were congruent with that in molecular levels, which the activity of SOD enhanced and CAT inhibited. Spectroscopic studies showed the SOD/CAT protein skeleton and secondary structure, as well as the micro-environment of aromatic amino acids were changed after PHE binding. Molecular docking indicated PHE preferentially docked to the surface of SOD. However, the key residues Tyr 357, His 74, and Asn 147 for activity were in the binding pocket, indicating PHE more likely to dock to the active center of CAT. In addition, H-bonding and hydrophobic force were the primary driving force in the binding interaction between PHE and SOD/CAT. This study indicates that PHE can induce cytotoxicity and oxidative damage to coelomocytes and unearthes the potential effects of PHE on earthworms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.126302DOI Listing
September 2021

Gadd45b is a novel mediator of depression-like behaviors and neuroinflammation after cerebral ischemia.

Biochem Biophys Res Commun 2021 05 27;554:107-113. Epub 2021 Mar 27.

Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China. Electronic address:

Background: Poststroke depression (PSD) is an important consequence after stroke, with a negative impact on stroke outcome. Recent evidence points to a modulatory role of Growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in depression. Herein, we evaluated the antidepressant efficacy and mechanism underlying the potent therapeutic effects of Gadd45b after cerebral ischemia.

Methods: Adult male Sprague-Dawley rats were subjected to cerebral ischemia by permanent middle cerebral artery occlusion (MCAO). The sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST) were performed after completing MCAO to study the antidepressant-like effects. The expression of brain-derived neurotrophic factor (BDNF) and neuroinflammation were determined in the hippocampus.

Results: We showed that Gadd45b knockdown induced depression-like behaviors after cerebral ischemia, including increased immobility time in the FST and TST and reduced sucrose preference. Gadd45b knockdown enhanced the expression of pro-inflammatory cytokines IL-6 and TNF-α, accompanying with decreased protein levels of BDNF in the hippocampus. Moreover, the levels of phosphorylated ERK and CREB, which have been implicated in events downstream of BDNF signaling, were also decreased after cerebral ischemia.

Conclusion: Hence, the results showed that Gadd45b is a promising drug candidate for treating PSD and possibly other nervous system diseases associated with neuroinflammation. Gadd45b may have therapeutic potential for PSD through BDNF-ERK-CREB pathway and neuroinflammation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.03.104DOI Listing
May 2021

Combined cytotoxicity of polystyrene nanoplastics and phthalate esters on human lung epithelial A549 cells and its mechanism.

Ecotoxicol Environ Saf 2021 Apr 15;213:112041. Epub 2021 Feb 15.

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada; Dept. Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada; Dept. Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA.

Awareness of risks posed by widespread presence of nanoplastics (NPs) and bioavailability and potential to interact with organic pollutants has been increasing. Inhalation is one of the more important pathways of exposure of humans to NPs. In this study, combined toxicity of concentrations of polystyrene NPs and various phthalate esters (PAEs), some of the most common plasticizers, including dibutyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) on human lung epithelial A549 cells were investigated. When co-exposed, 20 μg NPs/mL increased viabilities of cells exposed to either DBP or DEHP and the modulation of toxic potency of DEHP was greater than that of DBP, while the 200 μg NPs/mL resulted in lesser viability of cells. PAEs sorbed to NPs decreased free phase concentrations (C) of PAEs, which resulted in a corresponding lesser bioavailability and joint toxicity at the lesser concentration of NPs. The opposite effect was observed at the greater concentration of NPs, which may result from the dominated role of NPs in the combined toxicity. Furthermore, our data showed that oxidative stress and inflammatory reactions were mechanisms for combined cytotoxicities of PAEs and NPs on A549 cells. Results of this study emphasized the combined toxic effects and mechanisms on human lung cells, which are helpful for assessing the risk of the co-exposure of NPs and organic contaminants in humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112041DOI Listing
April 2021

A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics.

Sci Total Environ 2021 Jun 28;773:145403. Epub 2021 Jan 28.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145403DOI Listing
June 2021

Toxic effect and mechanism of ultrafine carbon black on mouse primary splenocytes and two digestive enzymes.

Ecotoxicol Environ Saf 2021 Apr 2;212:111980. Epub 2021 Feb 2.

School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao 266237, Shandong, PR China. Electronic address:

This paper investigated the toxic effect and mechanism of ultrafine carbon black (UFCB) on splenocytes and enzymes in the digestive system. It was found that the toxicity of UFCB to splenocytes was dose-dependent. UFCB with a low concentration (<15 μg/mL) had no significant effect on splenocytes while UFCB with high concentration (>15 μg/mL) induced significant oxidative damage with increased content of reactive oxygen species (ROS) (134%) and malonaldehyde (MDA) (222.3%) along with the decreased activity of superoxide dismutase (SOD) (55.63%) and catalase (CAT) (87.73%). Analysis combined cellular and molecular levels indicated that UFCB induced splenocyte toxicity through oxidative stress. The interactions of UFCB with two important digestive enzymes, α-amylase and lipase, were also studied respectively. Results showed that the interaction of UFCB and the two enzymes altered the particle size and fluorescence intensity in both experimental systems. The formation of protein corona also resulted in the contraction of the polypeptide skeleton in both enzymes, which further inhibited their activity. Our work provided basic data on the toxicity of UFCB in the spleen and digestive system and fills the gap in the study of UFPs toxicity. CAPSULE: UFCB induced splenocyte toxicity and enzyme dysfunction through oxidative stress and protein corona formation respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.111980DOI Listing
April 2021

Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels.

Int J Biol Macromol 2021 Feb 5;171:225-233. Epub 2021 Jan 5.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.12.169DOI Listing
February 2021

An exploration of the interaction mechanism of Direct Red 80 with α-Amylase at the molecular level.

J Mol Recognit 2021 May 16;34(5):e2883. Epub 2020 Dec 16.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Qingdao, China.

The use and production of Direct Red 80 (DR80) dye are growing rapidly, and a large amount of dye wastewater is discharged into the soil without treatment. DR80 accumulated in soil or sludge can lead to enzyme poisoning, inhibit microbial activity, and affect the transformation of substances in the soil. In this research, the interaction mechanism between DR80 and α-Amylase (a typical enzyme in soil and sludge) was investigated by multi-spectra, molecular docking, thermodynamics analysis and enzyme activity experiment. The results of UV-visible and resonance light scattering (RLS) spectra showed that the skeleton of α-Amylase became loosened and unfolded under the exposure of Direct Red. The size of α-Amylase was smaller and α-Amylase became dispersed under high concentration of DR80. Molecular docking and thermodynamic analysis showed that DR80 bound to the surface of domain A rather than the active site of α-Amylase in the form of hydrogen bonds, and the binding process was an exothermic reaction. In addition, the inhibition of α-Amylase activity by DR80 was verified by enzyme activity experiment. These results indicate that DR80 has an effect on the structure and function of α-Amylase at molecular level, which means that the toxicity of DR80 should receive more attention.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2883DOI Listing
May 2021

Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation.

Bioresour Technol 2021 Feb 20;321:124429. Epub 2020 Nov 20.

School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

This study aimed to investigate the synergistic effect and microbial community changes between chicken manure (CM) and cardboard (CB) during anaerobic co-digestion. Meanwhile, the energy balance of biogas engineering was extrapolated based on the batch tests. In batch tests, co-digestion system achieved the highest improvement (14.2%) and produced 319.62 mL CH/gVS with a 65:35 ratio of CB: CM. More extracellular polymeric substance secretion promoted the electron transfer for acidogenesis and more hydrolase was provided with 31.6% improvement. The microbial analysis illustrated that higher acetoclastic Methanosaeta abundance was achieved, leading to 211% enhancement of acetoclastic pathway. Moreover, associated network illustrated that the higher methane production was mainly achieved through matching of hydrolytic bacteria and acidogenesis bacteria. As for energy balance, the synergistic effect increased the energy output by 38% and energy recovery to 46.4%.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.124429DOI Listing
February 2021

Study of the effects of ultrafine carbon black on the structure and function of trypsin.

J Mol Recognit 2021 02 7;34(2):e2874. Epub 2020 Sep 7.

School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, PR China.

Due to the rapid development of industrial society, air pollution is becoming a serious problem which has being a huge threat to human health. Ultrafine particles (UFPs), one of the major air pollutants, are often the culprits of human diseases. At present, most of the toxicological studies of UFPs focus on their biological effects on lung cells and tissues, but there are less researches taking aim at the negative effects on functional proteins within the body. Therefore, we experimentally explored the effects of ultrafine carbon black (UFCB) on the structure and function of trypsin. After a short-term exposure to UFCB, the trypsin aromatic amino acid microenvironment, protein backbone and secondary structure were changed significantly, and the enzyme activity showed a trend that rose at first, then dropped. In addition, UFCB interacts with trypsin in the form of a complex. These studies demonstrated the negative effects of UFCB on trypsin, evidencing potential effects on animals and humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2874DOI Listing
February 2021

Exploring the influence of silver and lead on structure and function of xylanase: spectroscopic and calorimetric methods.

Toxicol Res (Camb) 2020 Jun 7;9(3):182-190. Epub 2020 May 7.

School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, P.R. China.

Soil contamination with heavy metal could induce the alteration of soil ecological environments, and soil enzyme activities are sensitive indicators for the soil toxicology. Xylanase is one of predominant soil enzymes related to carbon nitrogen cycle. In this work, we explored the underlying mechanisms for conformational and enzymatic activity alterations of xylanase after silver and lead exposure at molecular level with systematical measurements including multiple spectroscopic methods, isothermal titration calorimetry, and enzymatic activity. Both silver and lead could loosen and unfold the skeleton of xylanase with the quenching of endogenous fluorescence. Silver interacted with xylanase forming larger-size aggregations through Van der Waals forces and hydrogen bonding, while lead interacted with xylanase forming larger-size aggregations through hydrophobic force. Silver and lead induced an obvious loss (67.1 and 56.31%) of the xylanase enzymatic activity, but silver has a greater impact on xylanase than that of lead. The xylanase enzymatic activity significantly decreased due to the conformational alterations. The negative effect of silver exposure on xylanase structure and function was more prominent than that of lead.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxres/tfaa013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438702PMC
June 2020

Anthracene-induced DNA damage and oxidative stress: a combined study at molecular and cellular levels.

Environ Sci Pollut Res Int 2020 Nov 19;27(33):41458-41474. Epub 2020 Jul 19.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.

At present, research progress of anthracene's toxicity lags far behind the pollution caused on its application fields such as petroleum and minerals. In this paper, anthracene-induced oxidative stress effects and genetic toxicity were investigated at both the molecular and cellular levels. The intracellular oxidative stress effect of anthracene on earthworm primary coelomocyte was confirmed by the detection of reactive oxygen species, antioxidant enzymes activity, and malondialdehyde content. Moreover, after anthracene exposure, the decrease in the mitochondrial membrane potential and cell viability also indicated the adverse effects of anthracene on earthworm coelomocyte. The comet assay proved the break in DNA strand, revealing the anthracene-induced DNA damage. On the molecular level, we revealed that anthracene caused the shrinkage of the catalase skeleton and altered the microenvironment of chromophores of catalase by multi-spectral methods. Molecular simulation results indicated that anthracene interacted with His74 by "arene-arene" force and the dominant binding site between anthracene and catalase was close to the active site of catalase. In addition, anthracene was shown to bind to the DNA molecule by groove binding mode. This study proposed a new combined analysis method for the toxicity evaluation of anthracene at the cellular and molecular levels. Graphical abstract This study creatively proposed a new combined analysis for the toxicity evaluation of ANT at the cellular and molecular levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10049-yDOI Listing
November 2020

In vivo and in vitro studies on inactivation of selenium containing protein- glutathione peroxidase 3 in mice nephrocytes caused by lead.

Ecotoxicol Environ Saf 2020 Oct 17;203:111008. Epub 2020 Jul 17.

School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, Qingdao, 266237, PR China. Electronic address:

Glutathione peroxidases (Gpxs) play vital roles in elimination of hydroperoxide and other reactive oxygen species through catalyzing reduced glutathione to protect from oxidative stress caused by heavy metals such as lead. Among the family of Gpxs, Gpx3 is the only extracellular enzyme synthesized in the kidney and actively secreted into the plasma. This study investigated mechanisms of lead-induced GPx3 inactivation both at the animal and molecular levels. Six-week-old mice were randomly divided into 4 groups, and exposed to different lead concentrations (0, 1, 2 and 4 g/L) in their drinking water for 4 weeks. Contents of GPx3 in blood serum were tested by enzyme-linked immunosorbent assay (ELISA) and the mRNA levels of Gpx3 in mice nephrocytes were determined by quantitative real-time PCR (qPCR), both of which showed significantly inhibited at higher lead concentrations accompanied by the decreased Gpx3 activities and the elevated levels of malondialdehyde (MDA) in nephrocytes, which indicated that lead could induce strongly oxidative stress through affecting Gpx3 function. So we further investigated molecular mechanisms of GPx3 inactivation caused by lead with multiple spectroscopic techniques, isothermal titration calorimetry (ITC) and molecular docking studies in vitro. Results showed that lead statically quenched GPx3 fluorescence by tightly binding to the structural domain of GPx3 in a 3:1 ratio with high binding affinity (K = 3.1(±0.087) × 10 mol). Further investigation of the conformation of GPx3 by UV-visible spectroscopy and circular dichroism (CD) spectroscopy indicated that lead changed the secondary structure of GPx3 by loosening the GPx3 skeleton and decreasing the hydrophobicity around tryptophan residues. This work proved in vivo and in vitro experiments that lead could induce oxidative stress in mice nephrocytes by interacting with GPx3.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111008DOI Listing
October 2020

Toxicity assessment of Fluoranthene, Benz(a)anthracene and its mixed pollution in soil: Studies at the molecular and animal levels.

Ecotoxicol Environ Saf 2020 Oct 28;202:110864. Epub 2020 Jun 28.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China. Electronic address:

An increasing amount of Fluoranthene (Fla) and Benz(a)anthracene (BaA) is being produced and used, eventually entering the soil sediments. The accumulation of Fla and BaA will cause poisoning to typical enzymes (α-Amylase) and organisms (Eisenia fetida) in soil. However, the studies about exploring and comparing the different effects of Fla, BaA and their joint effect at different levels are rarely reported. In this paper, the different effects of Fla, BaA and their mixed pollutant on α-Amylase were evaluated and compared at the molecular level, and the effect of Fla-BaA to the antioxidant system of earthworm (Eisenia fetida) was investigated from the aspects of concentration and exposure time at the animal level. The results showed that Fla-BaA had the greatest influence on the skeleton structure and the microenvironment of amino acid residue of α-Amylase compared to Fla and BaA, and in the mixed pollutant system, the joint effect mode was additive mode. The inhibitory effect of Fla-BaA on the activity of α-Amylase was also stronger than that of the system alone. The assays at the animal level showed that low concentrations (below 5 mg/kg) of Fla-BaA increased the activity of GSH-Px and SOD while high concentrations inhibited their activity. The POD that was activated throughout the experiment period suggested its key role in the earthworm antioxidant system. Changes in T-AOC and MDA showed that long-term and high-dose of Fla-BaA exposure inhibited the antioxidant capacity of Eisenia fetida, causing lipid peroxidation and damage to cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110864DOI Listing
October 2020

Catalase and superoxide dismutase response and the underlying molecular mechanism for naphthalene.

Sci Total Environ 2020 Sep 21;736:139567. Epub 2020 May 21.

School of Environmental Science and Engineering, Shandong University, America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

Naphthalene, a naturally-occurring polyaromatic hydrocarbon, pose potential threats to health for its wide exposures in environment. Naphthalene could disrupt the redox equilibrium resulting in oxidative damage. Antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) are considered to be the efficient defense barriers to protect organisms from negative impacts of toxicants. Limited information is available regarding the underlying molecular mechanism between antioxidant enzymes and naphthalene. In this paper, structural and functional alterations of CAT and SOD for low dose (1.6-25.6 mg/L) naphthalene exposure have been investigated at the molecular and cellular levels. The enzyme activity responses of CAT and SOD in hepatocytes for naphthalene were consistent with the molecular, in which the activity of CAT increased and the activity of SOD slightly inhibited. Spectroscopy methods and molecular docking were carried out to investigate the underlying binding mechanisms. Naphthalene exposure significantly changed the conformation of CAT with secondary structure alteration (α-helix increase) but only changed the skeleton structure of SOD without secondary structure alteration. Naphthalene could bind to CAT and SOD primarily via H-binding force accompanied with the particle size of CAT/SOD agglomerates decreasing. Naphthalene preferentially bound to the surface of CAT and SOD. Besides, naphthalene could also bind directly to the active center of CAT with the key residues Arg364 and Tyr 357 for activity. This paper provides a combined cellular and molecular strategy to research biomarker responses for toxicants exposure. Besides, this study offers detailed basic data for the comprehensive understanding of naphthalene toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139567DOI Listing
September 2020

New insights into the release mechanism of Cd from CdTe quantum dots within single cells in situ.

Ecotoxicol Environ Saf 2020 Jun 8;196:110569. Epub 2020 Apr 8.

School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China. Electronic address:

Cadmium-quantum dots (Cd-QDs) possess unique properties as optoelectronic devices for sensitive detection in food and biomedicine fields. However, the toxic effects of Cd-QDs to single cells is still controversial, due to the release mechanism of QDs to Cdin situ and the cytotoxic effects of QDs and Cd respectively are still unclear. In this paper, the release rule of Cd from CdTe QDs within single cells was investigated in situ by using flow cytometry method and the dose-response relationships were explored. Besides, an all-inclusive microscopy system was optimized for live cell imaging to observe the real-time entry process of CdTe QDs into cells. We found that intracellular CdTe QDs and Cd contents were increased based on the dosage and exposing time. A dissociated saturation of Cd from CdTe QDs was exist within cells. CdTe QDs induced more serious cytotoxicity on kidney cells than hepatocytes. The toxicity of oxidative stress, cell apoptosis effects induced by CdTe QDs and Cd are also in consistent with this result. This research develops analytical method to quantify the uptake and release of Cd-QDs to primary cells in situ and can provide technical support in studying the cytotoxicity portion contributed by nanoparticles (NPs) and metal ions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110569DOI Listing
June 2020

Cytotoxicity of perfluorodecanoic acid on mouse primary nephrocytes through oxidative stress: Combined analysis at cellular and molecular levels.

J Hazard Mater 2020 07 2;393:122444. Epub 2020 Mar 2.

School of Environmental Science and Engineering, China-America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China. Electronic address:

Long-chain perfluoroalkyl acids (PFAAs) such as perfluorodecanoic acid (PFDA) are toxic, persistent organic pollutants. This study investigated the harmful effect of PFDA on mouse primary nephrocytes and its mechanism at cellular and molecular levels. Cellular results showed that PFDA exhibited nephrotoxicity with decreased cell viability and increased apoptosis. The increase of intracellular reactive oxygen species (ROS) content and the decrease of intracellular superoxide dismutase (SOD) activity were significant (p < 0.01) when PFDA concentration exceeded 10 μM. Additionally, the molecular results indicated that PFDA bind with Val-A98 in the surface of Cu/Zn-SOD by a 3.11 Å hydrogen bond driven by Van der Waals' force and hydrogen bonding force, which triggered the structural changes and decreased activity of Cu/Zn-SOD. Altogether, the intracellular oxidative stress is the main driver of nephrocyte apoptosis; and the interaction of PFDA and Cu/Zn-SOD exacerbated the oxidative stress in nephrocytes, which is also a nonnegligible reason of cytotoxicity induced by PDFA. This study represented a meaningful method to explore the toxic effect and mechanism of xenobiotics at cellular and molecular levels. The findings have implications for revealing the clearance of long-chain PFAAs in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122444DOI Listing
July 2020

Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145.

Sci Total Environ 2020 Jun 25;720:137582. Epub 2020 Feb 25.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, China.

The toxic effects of multi-nanomaterial systems are receiving increasing attention owing to their inevitable release of various nanomaterials. Knowledge of the bioavailability of the new carbon material ball-milled biochar (BMB) and its synergistic toxicity with metal oxide nanoparticles in bacteria is currently limited. In this study, the interactions of BMB with copper oxide nanoparticles (CuO NPs) and their synergistic toxicity towards Streptomyces coelicolor M145 were analyzed. Results showed that the cytotoxicity, ROS level and permeability of cells changed greatly with the pyrolysis temperatures of biochar and the concentrations of CuO NPs. The greatest cytotoxicity (up to 63.1%) was achieved by adding 20 mg/L CuO NPs to BMB700. The ROS level and cell permeability of this treatment was also the highest, about 4.2 folds and 2.9 folds greater than that of control, respectively. The combination of 10 mg/L BMB700 with 10 mg/L CuO NPs can maximize production of antibiotics, with the yield of undecylprodigiosin (RED) and actinorhodin (ACT) 3.0 times and 4.2 times higher than that in the control, respectively, and the change trend of related genes was consistent with that of antibiotics production. Mechanism analysis showed that the different adsorption capacity of BMB of different pyrolysis temperatures on copper ions played a vital role in the synergistic toxicity, and the increase in cell membrane permeability caused by cell collisions with particles was also an important reason for cytotoxicity. Overall, the synergistic toxicity of BMB with other NPs varies the pyrolysis temperatures, when considering the synergistic toxicity of these materials, the preparation conditions need to be taken into account so as to assess their environmental risks more accurately. On the other hand, this research may provide a new approach for the antibiotic industry to increase its output.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137582DOI Listing
June 2020

Enhancement methane fermentation of Enteromorpha prolifera waste by Saccharomyces cerevisiae: batch kinetic investigation, dissolved organic matter characterization, and synergistic mechanism.

Environ Sci Pollut Res Int 2020 May 2;27(14):16254-16267. Epub 2020 Mar 2.

School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, 266237, Shandong, People's Republic of China.

With the invasion of green tide, there were millions of tons of Enteromorpha prolifera (Enteromorpha) that need to be disposed of. An efficient microecological system for Enteromorpha fermentation was constructed using Saccharomyces cerevisiae (S. cerevisiae) and granular sludge at mesophilic condition (35 °C). In order to investigate the influence of S. cerevisiae dosage on fermentation, biomethane production and variations in dissolved organic matter (DOM) were investigated. The results indicated that the microecosystem with added S. cerevisiae exhibited improved fermentation capacity. Specifically, biomethane production was improved by 18%, with a maximum methane yield of 331 mL/g VS, and the time required to reach 90% methane yield was reduced by 41%. There were positive linear relationships between S. cerevisiae dosage and the efficiency of hydrolysis, acidogenesis, acetogenesis, and methanogenesis (R > 0.9). According to theoretical calculations, there was a positive effect of lower S. cerevisiae dosage (less than 0.93 g/g TS) on biomethane production, and excess dosage (more than 0.93 g/g TS) led to a negative effect due to volatile fatty acid (VFA) accumulation. The excitation-emission matrix (EEM) indicated that the humification index (HIX) and fulvic acid (FA) percentage of fluorescence regional integration in the system were decreased because the quinone and ketone groups of the FA accepted electrons from S. cerevisiae. These findings suggested that this microecosystem can accelerate fermentation speed (41%) and increase biomethane output (18.2%). The synergistic effect of Enteromorpha fermentation with Saccharomyces cerevisiae addition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-08013-xDOI Listing
May 2020

Probing the Cell Apoptosis Pathway Induced by Perfluorooctanoic Acid and Perfluorooctane Sulfonate at the Subcellular and Molecular Levels.

J Agric Food Chem 2020 Jan 31;68(2):633-641. Epub 2019 Dec 31.

School of Environmental Science and Engineering, China-America CRC for Environment & Health , Shandong University , 72# Jimo Binhai Road , Qingdao , Shandong 266237 , P. R. China.

As typical perfluorinated compounds (PFCs), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been detected in various environmental media and their toxic effects have been extensively studied. Nevertheless, it remains unclear how PFCs cause cell apoptosis in healthy hepatocytes by inducing oxidative stress at the subcellular and molecular levels. In this study, the apoptotic pathways induced by PFOA and PFOS were explored. Besides, the effects of PFCs on the structure and function of lysozyme (LYZ) were investigated. After PFOA and PFOS exposure, the cell membrane and mitochondrial membrane potential were damaged. Further, PFOA and PFOS increased intracellular Ca levels to 174.41 ± 1.70 and 158.91 ± 5.94%, respectively. Ultimately, caspase-3 was activated, causing cell apoptosis. As an indirect antioxidant enzyme, the molecular structure of LYZ was destroyed after interacting with PFOA and PFOS. Both PFOA and PFOS bound to the active center of LYZ, leading to the decrease of LYZ activity to 91.26 ± 0.78 and 76.01 ± 4.86%, respectively. This study demonstrates that PFOA and PFOS inhibit LYZ function, which can reduce the body's ability to resist oxidative stress, and then lead to mitochondria-mediated apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b07072DOI Listing
January 2020

Hematological effects of ultrafine carbon black on red blood cells and hemoglobin.

J Biochem Mol Toxicol 2020 Mar 20;34(3):e22438. Epub 2019 Dec 20.

School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Qingdao, Shandong, China.

The harmful effects of ultrafine particles (UFPs) in the atmosphere have caused widespread concern. Ultrafine carbon black (UFCB) is an important component of UFPs. In this study, we explored the impact of UFCB on the structure, the antioxidant defense system, and the ATPase activity of human red blood cells (hRBCs). It was found that UFCB decreased the activity of SOD (73.58%), CAT (89.79%), and GSH-Px (81.02%), leading to oxidative stress in hRBCs. UFCB had no destructive effect on the structure of hRBCs in 4 hours. ATPase activity increased (119.34%) and UFCB had weakly stimulated the cell membrane. On the molecular level, spectroscopic experiments showed that bovine hemoglobin (BHb) can bind to the UFCB by electrostatic force, leading to the shrinking of the BHb skeleton and increase in microenvironment polarity. This study demonstrates the negative hematological effect of UFCB on hemoglobin and hRBCs and reveals the potential risks in animals and humans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.22438DOI Listing
March 2020

Whole Body Vibration Triggers a Change in the Mutual Shaping State of Intestinal Microbiota and Body's Immunity.

Front Bioeng Biotechnol 2019 29;7:377. Epub 2019 Nov 29.

School of Basic Medical Science, Shandong University, Jinan, China.

Whole body vibration (WBV) is a non-invasive physical therapy that has recently been included in the hospital's patient rehabilitation training catalog, but its health effects have not been sufficiently studied. In the present study, to examine the possible effects of WBV on immune cell differentiation, the IFN, IL-4,-17, F4/80 and CD3,-4,-8,-11b,-11c,-19 markers were used to characterizing the cells in mouse spleen. The results showed that the CD4 and CD25 positive lymphocytes in the spleen were significantly increased in the WBV group, and the population of Treg cells was enhanced significantly in response to WBV. Since the differentiation in immune cells is usually associated with microbiota, therefore the intestinal flora was characterized in mice and human individuals. The results indicated that WBV significantly reduced the α-diversity of mouse intestinal microbiota. Moreover, the principal coordinate analysis (PCoA) results indicated that the β-diversities of both mice and human fecal microbiota increased after WBV. Analysis of the bacterial composition indicated that the contents of a variety of bacteria changed in mice upon the stimulation of vibration, such as in mice, and and in human. The succeeding correlation analysis revealed that some bacteria with significant content variations were correlated to the regulatory T cell differentiation in mice and physical characteristics in human. Our research will provide the basis for future non-invasive treatment of microbial and immune related diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fbioe.2019.00377DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895539PMC
November 2019

Response to the comments on: Molecular mechanism of CAT and SOD activity change under MPA-CdTe quantum dots induced oxidative stress in the mouse primary hepatocytes.

Spectrochim Acta A Mol Biomol Spectrosc 2020 04 27;231:117872. Epub 2019 Nov 27.

School of Environmental Science and Engineering, Shandong University, China -America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.117872DOI Listing
April 2020

In vitro toxicity and molecular interacting mechanisms of chloroacetic acid to catalase.

Ecotoxicol Environ Saf 2020 Feb 4;189:109981. Epub 2019 Dec 4.

College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, PR China.

Chloroacetic acid (CAA), one of typical disinfection by-products (DBPs), has attracted considerable concerns for its biological safety. Antioxidant enzyme catalase (CAT) plays a crucial part in the regulation of redox state balance. Herein, CAA was used to test its adverse effects on CAT and explore the underlying mechanism. The cell viability of mouse primary hepatocytes decreased under CAA exposure. A bell-shaped response to CAA exposure was observed in intracellular CAT activity, whose change was partly influenced by molecular CAT activity. CAA binds to CAT mainly via van der Waals forces and hydrogen bonds with a stoichiometry of 9.2. The binding caused structural changes in CAT with the unfolding of polypeptide chains and the decrease of α-helical content. CAA interacts with the amino acid residues surrounding the active sites and substrate channel of CAT. These interactions result in the decrease of molecular CAT activity, which could be restored by high ionic strength. This study has provided a combined molecular and cellular tactics for studying the adverse effects of DBPs on biomarkers and the underlying mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2019.109981DOI Listing
February 2020
-->