Publications by authors named "Ruochen Jia"

6 Publications

  • Page 1 of 1

Hematopoietic expression of a chimeric murine-human CALR oncoprotein allows the assessment of anti-CALR antibody immunotherapies in vivo.

Am J Hematol 2021 Mar 24. Epub 2021 Mar 24.

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Myeloproliferative neoplasms (MPNs) are characterised by a pathologic expansion of myeloid lineages. Mutations in JAK2, CALR and MPL genes are known to be three prominent MPN disease drivers. Mutant CALR (mutCALR) is an oncoprotein that interacts with and activates the thrombopoietin receptor (MPL) and represents an attractive target for targeted therapy of CALR mutated MPN. We generated a transgenic murine model with conditional expression of the human mutant exon 9 (del52) from the murine endogenous Calr locus. These mice develop essential thrombocythemia like phenotype with marked thrombocytosis and megakaryocytosis. The disease exacerbates with age showing prominent signs of splenomegaly and anemia. The disease is transplantable and mutCALR stem cells show proliferative advantage when compared to wild type stem cells. Transcriptome profiling of hematopoietic stem cells revealed oncogenic and inflammatory gene expression signatures. To demonstrate the applicability of the transgenic animals for immunotherapy, we treated mice with monoclonal antibody raised against the human mutCALR. The antibody treatment lowered platelet and stem cell counts in mutant mice. Secretion of mutCALR did not constitute a significant antibody sink. This animal model not only recapitulates human MPN but also serves as a relevant model for testing immunotherapeutic strategies targeting epitopes of the human mutCALR. This article is protected by copyright. All rights reserved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.26171DOI Listing
March 2021

5-Arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones with selective inhibitory activity against some leukemia cell lines.

Arch Pharm (Weinheim) 2021 Apr 25;354(4):e2000342. Epub 2020 Nov 25.

Department of Pharmaceutical, Organic, and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine.

The data on the pharmacology of 4-thiazolidinones showed that 5-ene-2-(imino)amino-4-thiazolidinones are likely to comprise one of the most promising groups of compounds possessing anticancer properties. A series of 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones was designed, synthesized, and studied against 10 leukemia cell lines, including the HL-60, Jurkat, K-562, Dami, KBM-7, and some Ba/F3 cell lines. The structure-activity relationship analysis shows that almost all tested 5-arylidene-2-(4-hydroxyphenyl)aminothiazol-4(5H)-ones were characterized by ІС values lower or comparable to that of the control drug chlorambucil. Among the tested compounds, (5Z)-5-(2-methoxybenzylidene)- (12), (5Z)-(2-ethoxybenzylidene)- (21), (5Z)-5-(2-benzyloxybenzylidene)- (25), and (5Z)-5-(2-allyloxybenzylidene)-2-(4-hydroxyphenylamino)thiazol-4(5H)-ones (28) possessed the highest antileukemic activity at submicromolar concentrations (ІС  = 0.10-0.95 µM).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.202000342DOI Listing
April 2021

Hematoxylin binds to mutant calreticulin and disrupts its abnormal interaction with thrombopoietin receptor.

Blood 2021 Apr;137(14):1920-1931

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Somatic mutations of calreticulin (CALR) have been identified as a main disease driver of myeloproliferative neoplasms, suggesting that development of drugs targeting mutant CALR is of great significance. Site-directed mutagenesis in the N-glycan binding domain (GBD) abolishes the ability of mutant CALR to oncogenically activate the thrombopoietin receptor (MPL). We therefore hypothesized that a small molecule targeting the GBD might inhibit the oncogenicity of the mutant CALR. Using an in silico molecular docking study, we identified candidate binders to the GBD of CALR. Further experimental validation of the hits identified a group of catechols inducing a selective growth inhibitory effect on cells that depend on oncogenic CALR for survival and proliferation. Apoptosis-inducing effects by the compound were significantly higher in the CALR-mutated cells than in CALR wild-type cells. Additionally, knockout or C-terminal truncation of CALR eliminated drug hypersensitivity in CALR-mutated cells. We experimentally confirmed the direct binding of the selected compound to CALR, disruption of the mutant CALR-MPL interaction, inhibition of the JAK2-STAT5 pathway, and reduction at the intracellular level of mutant CALR upon drug treatment. Our data indicate that small molecules targeting the GBD of CALR can selectively kill CALR-mutated cells by disrupting the CALR-MPL interaction and inhibiting oncogenic signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2020006264DOI Listing
April 2021

Progress in elucidation of molecular pathophysiology of myeloproliferative neoplasms and its application to therapeutic decisions.

Int J Hematol 2020 Feb 18;111(2):182-191. Epub 2019 Nov 18.

Department of Laboratory Medicine, Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria.

Myeloproliferative neoplasms (MPNs) are hematological diseases that are driven by somatic mutations in hematopoietic stem and progenitor cells. These mutations include JAK2, CALR and MPL mutations as the main disease drivers, mutations driving clonal expansion, and mutations that contribute to progression of chronic MPNs to myelodysplasia and acute leukemia. JAK-STAT pathway has played a central role in the disease pathogenesis of MPNs. Mutant JAK2, CALR or MPL constitutively activates JAK-STAT pathway independent of the cytokine regulation. Symptomatic management is the primary goal of MPN therapy in ET and low-risk PV patients. JAK2 inhibitors and interferon-α are the established therapies in MF and high-risk PV patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12185-019-02778-9DOI Listing
February 2020

MEK inhibition leads to BRCA2 downregulation and sensitization to DNA damaging agents in pancreas and ovarian cancer models.

Oncotarget 2018 Feb 22;9(14):11592-11603. Epub 2018 Jan 22.

Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6DD, UK.

Targeting the DNA damage response (DDR) in tumors with defective DNA repair is a clinically successful strategy. The RAS/RAF/MEK/ERK signalling pathway is frequently deregulated in human cancers. In this study, we explored the effects of MEK inhibition on the homologous recombination pathway and explored the potential for combination therapy of MEK inhibitors with DDR inhibitors and a hypoxia-activated prodrug. We studied effects of combining pimasertib, a selective allosteric inhibitor of MEK1/2, with olaparib, a small molecule inhibitor of poly (adenosine diphosphate [ADP]-ribose) polymerases (PARP), and with the hypoxia-activated prodrug evofosfamide in ovarian and pancreatic cancer cell lines. Apoptosis was assessed by Caspase 3/7 assay and protein expression was detected by immunoblotting. DNA damage response was monitored with γH2AX and RAD51 immunofluorescence staining. antitumor activity of pimasertib with evofosfamide were assessed in pancreatic cancer xenografts. We found that BRCA2 protein expression was downregulated following pimasertib treatment under hypoxic conditions. This translated into reduced homologous recombination repair demonstrated by levels of RAD51 foci. MEK inhibition was sufficient to induce formation of γH2AX foci, suggesting that inhibition of this pathway would impair DNA repair. When combined with olaparib or evofosfamide, pimasertib treatment enhanced DNA damage and increased apoptosis. The combination of pimasertib with evofosfamide demonstrated increased anti-tumor activity in BRCA wild-type Mia-PaCa-2 xenograft model, but not in the BRCA mutated BxPC3 model. Our data suggest that targeted MEK inhibition leads to impaired homologous recombination DNA damage repair and increased PARP inhibition sensitivity in BRCA-2 proficient cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.24294DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837749PMC
February 2018

Role of Reactive Oxygen Species in the Abrogation of Oxaliplatin Activity by Cetuximab in Colorectal Cancer.

J Natl Cancer Inst 2016 Jun 30;108(6):djv394. Epub 2015 Dec 30.

Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, University College London, London, UK (VS, RJ, KK, JAH, DH); Colorectal Cancer Genetics Group, Blizard Institute, London, UK (HT, AN, RJ, ARS);

Background: The antibody cetuximab, targeting epidermal growth factor receptor (EGFR), is used to treat metastatic colorectal cancer (mCRC). Clinical trials suggest reduced benefit from the combination of cetuximab with oxaliplatin. The aim of this study was to investigate potential negative interactions between cetuximab and oxaliplatin.

Methods: Thiazolyl blue tetrazolium bromide (MTT) assay and Calcusyn software were used to characterize drug interactions. Reactive oxygen species (ROS) were measured by flow cytometry and real-time polymerase chain reaction oxidative stress arrays identified genes regulating ROS production. Chromatin immunoprecipitation (ChIP) measured signal transducer and activator of transcription 1 (STAT-1) binding to dual oxidase 2 (DUOX2) promoter. SW48, DLD-1 KRAS wild-type cell lines and DLD-1 xenograft models exposed to cetuximab, oxaliplatin, or oxaliplatin + cetuximab (control [saline]; n = 3 mice per treatment group) were used. Statistical tests were two-sided.

Results: Cetuximab and oxaliplatin exhibited antagonistic effects on cellular proliferation and apoptosis (caspase 3/7 activity reduced by 1.4-fold, 95% confidence interval [CI] = 0.78 to 2.11, P = .003) as opposed to synergistic effects observed with the irinotecan metabolite 7-Ethyl-10-hydroxycamptothecin (SN-38). Although both oxaliplatin and SN-38 produced ROS, only oxaliplatin-mediated apoptosis was ROS dependent. Production of ROS by oxaliplatin was secondary to STAT1-mediated transcriptional upregulation of DUOX2 (3.1-fold, 95% CI = 1.75 to 2.41, P < .001). Inhibition of DUOX2 induction and p38 activation by cetuximab reduced oxaliplatin cytotoxicity.

Conclusions: Inhibition of STAT1 and DUOX2-mediated ROS generation by cetuximab impairs p38-dependent apoptosis by oxaliplatin in preclinical models and may contribute to reduced efficacy in clinical settings. Understanding the rationale for unexpected trial results will inform improved rationales for combining EGFR inhibitors with chemotherapeutic agents in future therapeutic use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djv394DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4864961PMC
June 2016