Publications by authors named "Rudzani Malabi"

3 Publications

  • Page 1 of 1

Exploring optical spectroscopic techniques and nanomaterials for virus detection.

Saudi J Biol Sci 2021 Jan 27;28(1):78-89. Epub 2020 Aug 27.

Council for Scientific and Industrial Research (CSIR), National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa.

Viral infections pose significant health challenges globally by affecting millions of people worldwide and consequently resulting in a negative impact on both socioeconomic development and health. Corona virus disease 2019 (COVID-19) is a clear example of how a virus can have a global impact in the society and has demonstrated the limitations of detection and diagnostic capabilities globally. Another virus which has posed serious threats to world health is the human immunodeficiency virus (HIV) which is a lentivirus of the retroviridae family responsible for causing acquired immunodeficiency syndrome (AIDS). Even though there has been a significant progress in the HIV biosensing over the past years, there is still a great need for the development of point of care (POC) biosensors that are affordable, robust, portable, easy to use and sensitive enough to provide accurate results to enable clinical decision making. The aim of this study was to present a proof of concept for detecting HIV-1 pseudoviruses by using anti-HIV1 gp41 antibodies as capturing antibodies. In our study, glass substrates were treated with a uniform layer of silane in order to immobilize HIV gp41 antibodies on their surfaces. Thereafter, the HIV pseudovirus was added to the treated substrates followed by addition of anti-HIV gp41 antibodies conjugated to selenium nanoparticle (SeNPs) and gold nanoclusters (AuNCs). The conjugation of SeNPs and AuNCs to anti-HIV gp41 antibodies was characterized using UV-vis spectroscopy, transmission electron microscopy (TEM) and zeta potential while the surface morphology was characterized by fluorescence microscopy, atomic force microscopy (AFM) and Raman spectroscopy. The UV-vis and zeta potential results showed that there was successful conjugation of SeNPs and AuNCs to anti-HIV gp41 antibodies and fluorescence microscopy showed that antibodies immobilized on glass substrates were able to capture intact HIV pseudoviruses. Furthermore, AFM also confirmed the capturing HIV pseudoviruses and we were able to differentiate between substrates with and without the HIV pseudoviruses. Raman spectroscopy confirmed the presence of biomolecules related to HIV and therefore this system has potential in HIV biosensing applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sjbs.2020.08.034DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449958PMC
January 2021

Laser-enhanced drug delivery of antiretroviral drugs into human immunodeficiency virus-1 infected TZMbl cells.

J Biophotonics 2019 10 15;12(10):e201800424. Epub 2019 Jul 15.

Biophotonics, National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.

The introduction of highly active antiretroviral therapy (HAART) has significantly increased life expectancy and improved management of the human immunodeficiency virus-1 (HIV-1) disease globally. This well-established treatment regime has shown to reduce viral capacity to undetectable limits when using traditional clinical assays. The establishment of viral reservoirs during the early stages of infection are the major contributors to failure of the current regimens to eradicate HIV-1 infection since the reservoirs are not affected by antiretroviral drugs (ARVs). Therefore, advanced modification of the present treatment and investigation of novel antiretroviral drug delivery system are needed. The aim of this study was to use femtosecond (fs) laser pulses to deliver ARVs into HIV-1 infected TZMbl cells. Different ARVs were translocated into TZMbl cells using fs pulsed laser (800 nm) with optimum power of 4 μW and 10 ms laser to cell exposure time. Changes in cellular processes were evaluated using cellular morphology, viability, cytotoxicity and luciferase activity assays. Cells treated with the laser in the presence of ARVs showed a significant reduction in viral infectivity, cell viability and an increase in cytotoxicity. This study demonstrated that fs laser pulses were highly effective in delivering ARVs into HIV-1 infected TZMbl cells, causing a significant reduction in HIV-1 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201800424DOI Listing
October 2019

Label-free differentiation of human immunodeficiency virus-1 infected from uninfected cells using transmission measurement.

J Biophotonics 2019 07 1;12(7):e201800349. Epub 2019 Apr 1.

Biophotonics, National Laser Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.

Transmission measurement has been perceived as a potential candidate for label-free investigation of biological material. It is a real-time, label-free and non-invasive optical detection technique that has found wide applications in pharmaceutical industry as well as the biological and medical fields. Combining transmission measurement with optical trapping has emerged as a powerful tool allowing stable sample trapping, while also facilitating transmittance data analysis. In this study, a near-infrared laser beam emitting at a wavelength of 1064 nm was used for both optical trapping and transmission measurement investigation of human immunodeficiency virus 1 (HIV-1) infected and uninfected TZM-bl cells. The measurements of the transmittance intensity of individual cells in solution were carried out using a home built optical trapping system combined with laser transmission setup using a single beam gradient trap. Transmittance spectral intensity patterns revealed significant differences between the HIV-1 infected and uninfected cells. This result suggests that the transmittance data analysis technique used in this study has the potential to differentiate between infected and uninfected TZM-bl cells without the use of labels. The results obtained in this study could pave a way into developing an HIV-1 label-free diagnostic tool with possible applications at the point of care .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201800349DOI Listing
July 2019