Publications by authors named "Roy G Masius"

3 Publications

  • Page 1 of 1

Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics.

Brain 2019 04;142(4):867-884

Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2019

Stratification based on methylation of TBX2 and TBX3 into three molecular grades predicts progression in patients with pTa-bladder cancer.

Mod Pathol 2015 Apr 14;28(4):515-22. Epub 2014 Nov 14.

Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.

The potential risk of recurrence and progression in patients with non-muscle-invasive bladder cancer necessitates followup by cystoscopy. The risk of progression to muscle-invasive bladder cancer is estimated based on the European Organisation of Research and Treatment of Cancer score, a combination of several clinicopathological variables. However, pathological assessment is not objective and reproducibility is insufficient. The use of molecular markers could contribute to the estimation of tumor aggressiveness. We recently demonstrated that methylation of GATA2, TBX2, TBX3, and ZIC4 genes could predict progression in Ta tumors. In this study, we aimed to validate the markers in a large patient set using DNA from formalin-fixed and paraffin-embedded tissue. PALGA: the Dutch Pathology Registry was used for patient selection. We included 192 patients with pTaG1/2 bladder cancer of whom 77 experienced progression. Methylation analysis was performed and log-rank analysis was used to calculate the predictive value of each methylation marker for developing progression over time. This analysis showed better progression-free survival in patients with low methylation rates compared with the patients with high methylation rates for all markers (P<0.001) during a followup of ten-years. The combined predictive effect of the methylation markers was analyzed with the Cox-regression method. In this analysis, TBX2, TBX3, and ZIC4 were independent predictors of progression. On the basis of methylation status of TBX2 and TBX3, patients were divided into three new molecular grade groups. Survival analysis showed that only 8% of patients in the low molecular grade group progressed within 5 years. This was 29 and 63% for the intermediate- and high-molecular grade groups. In conclusion, this new molecular-grade based on the combination of TBX2 and TBX3 methylation is an excellent marker for predicting progression to muscle-invasive bladder cancer in patients with primary pTaG1/2 bladder cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
April 2015

Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome.

Eur Urol 2014 Feb 7;65(2):360-6. Epub 2013 Sep 7.

Epithelial Carcinogenesis Group, Molecular Pathology Program, CNIO (Spanish National Cancer Research Center), Madrid, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain. Electronic address:

Background: Hotspot mutations in the promoter of the gene coding for telomerase reverse transcriptase (TERT) have been described and proposed to activate gene expression.

Objectives: To investigate TERT mutation frequency, spectrum, association with expression and clinical outcome, and potential for detection of recurrences in urine in patients with urothelial bladder cancer (UBC).

Design, Setting, And Participants: A set of 111 UBCs of different stages was used to assess TERT promoter mutations by Sanger sequencing and TERT messenger RNA (mRNA) expression by reverse transcription-quantitative polymerase chain reaction. The two most frequent mutations were investigated, using a SNaPshot assay, in an independent set of 184 non-muscle-invasive and 173 muscle-invasive UBC (median follow-up: 53 mo and 21 mo, respectively). Voided urine from patients with suspicion of incident UBC (n=174), or under surveillance after diagnosis of non-muscle-invasive UBC (n=194), was tested using a SNaPshot assay.

Outcome Measurements And Statistical Analysis: Association of mutation status with age, sex, tobacco, stage, grade, fibroblast growth factor receptor 3 (FGFR3) mutation, progression-free survival, disease-specific survival, and overall survival.

Results And Limitations: In the two series, 78 of 111 (70%) and 283 of 357 (79%) tumors harbored TERT mutations, C228T being the most frequent substitution (83% for both series). TERT mutations were not associated with clinical or pathologic parameters, but were more frequent among FGFR3 mutant tumors (p=0.0002). There was no association between TERT mutations and mRNA expression (p=0.3). Mutations were not associated with clinical outcome. In urine, TERT mutations had 90% specificity in subjects with hematuria but no bladder tumor, and 73% in recurrence-free UBC patients. The sensitivity was 62% in incident and 42% in recurrent UBC. A limitation of the study is its retrospective nature.

Conclusions: Somatic TERT promoter mutations are an early, highly prevalent genetic event in UBC and are not associated with TERT mRNA levels or disease outcomes. A SNaPshot assay in urine may help to detect UBC recurrences.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
February 2014