Publications by authors named "Roy C K Kong"

4 Publications

  • Page 1 of 1

Mapping key regions of the RXFP2 low-density lipoprotein class-A module that are involved in signal activation.

Biochemistry 2014 Jul 10;53(28):4537-48. Epub 2014 Jul 10.

Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, ‡Florey Institute of Neuroscience and Mental Health, and §School of Chemistry, University of Melbourne , Parkville, Victoria 3010, Australia.

The peptide hormone INSL3 and its receptor, RXFP2, have co-evolved alongside relaxin and its receptor, RXFP1. Both RXFP1 and RXFP2 are G protein-coupled receptors (GPCRs) containing the hallmark seven transmembrane helices in addition to a distinct ectodomain of leucine-rich repeats (LRRs) and a single low-density lipoprotein class-A (LDLa) module at the N-terminus. RXFP1 and RXFP2 are the only mammalian GPCRs known to contain an LDLa, and its removal does not perturb primary ligand binding to the LRRs; however, signaling is abolished. This presents a general mechanism whereby ligand binding induces a conformational change in the receptor to position the LDLa to elicit a signal response. Although the LDLa interaction site has not been identified, the residues important to the action have been mapped within the RXFP1 LDLa module. In this study, we comprehensively study the RXFP2 LDLa module. We determine its structure using nuclear magnetic resonance (NMR) and concurrently investigate the signaling of an RXFP2 with the LDLa removed (RXFP2-short), confirming that the LDLa is essential to signaling. We then replaced the LDLa with the second ligand binding module from the LDL receptor, LB2, creating the RXFP2-LB2 chimera. Unlike that in the equivalent RXFP1-LB2 chimera, signaling is rescued albeit modestly. Guided by the NMR structure, we dissected regions of the RXFP2 LDLa to identify specific residues that are important to signal activation. We determine that although the module is important to the activation of RXFP2, unlike the RXFP1 receptor, specific residues in the N-terminus of the domain are not involved in signal activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi500797dDOI Listing
July 2014

Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules.

Front Endocrinol (Lausanne) 2013 11;4:171. Epub 2013 Nov 11.

Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health , Melbourne, VIC , Australia ; Department of Biochemistry and Molecular Biology , Melbourne, VIC , Australia.

Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP-based signaling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand-mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a similar mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2013.00171DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822782PMC
November 2013

The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation.

J Biol Chem 2013 Sep 7;288(39):28138-51. Epub 2013 Aug 7.

From the Florey Institute of Neuroscience and Mental Health and Florey Department of Neuroscience and Mental Health.

The peptide hormone relaxin is showing potential as a treatment for acute heart failure. Although it is known that relaxin mediates its actions through the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), little is known about the molecular mechanisms by which relaxin binding results in receptor activation. Previous studies have highlighted that the unique N-terminal low density lipoprotein class A (LDLa) module of RXFP1 is essential for receptor activation, and it has been hypothesized that this module is the true "ligand" of the receptor that directs the conformational changes necessary for G protein coupling. In this study, we confirmed that an RXFP1 receptor lacking the LDLa module binds ligand normally but cannot signal through any characterized G protein-coupled receptor signaling pathway. Furthermore, we comprehensively examined the contributions of amino acids in the LDLa module to RXFP1 activity using both gain-of-function and loss-of-function mutational analysis together with NMR structural analysis of recombinant LDLa modules. Gain-of-function studies with an inactive RXFP1 chimera containing the LDLa module of the human LDL receptor (LB2) demonstrated two key N-terminal regions of the module that were able to rescue receptor signaling. Loss-of-function mutations of residues in these regions demonstrated that Leu-7, Tyr-9, and Lys-17 all contributed to the ability of the LDLa module to drive receptor activation, and judicious amino acid substitutions suggested this involves hydrophobic interactions. Our results demonstrate that these key residues contribute to interactions driving the active receptor conformation, providing further evidence of a unique mode of G protein-coupled receptor activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M113.499640DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784725PMC
September 2013

Membrane receptors: structure and function of the relaxin family peptide receptors.

Mol Cell Endocrinol 2010 May 6;320(1-2):1-15. Epub 2010 Feb 6.

Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia.

The receptors for members of the relaxin peptide family have only recently been discovered and are G-protein-coupled receptors (GPCRs). Relaxin and insulin-like peptide 3 (INSL3) interact with the leucine-rich-repeat-containing GPCRs (LGRs) LGR7 and LGR8, respectively. These receptors show closest similarity to the glycoprotein hormone receptors and contain large ectodomains with 10 leucine-rich repeats (LRRs) but are unique members of the LGR family (class C) as they have an LDL class A (LDLa) module at their N-terminus. In contrast, relaxin-3 and INSL5 interact with another class of type I GPCRs which lack a large ectodomain, the peptide receptors GPCR135 and GPCR142, respectively. These receptors are now classified as relaxin family peptide (RXFP) receptors, RXFP1 (LGR7), RXFP2 (LGR8), RXFP3 (GPCR135) and RXFP4 (GPCR142). This review outlines the identification of the peptides and receptors, their expression profiles and physiological roles and the functional interactions of the peptides with their unique receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2010.02.003DOI Listing
May 2010