Publications by authors named "Rosaria Formisano"

2 Publications

  • Page 1 of 1

Synaptic vesicle fusion is modulated through feedback inhibition by dopamine auto-receptors.

Synapse 2020 01 23;74(1):e22131. Epub 2019 Sep 23.

Department of Biological Sciences, Delaware State University, Dover, Delaware.

Mechanisms of synaptic vesicular fusion and neurotransmitter clearance are highly controlled processes whose finely-tuned regulation is critical for neural function. This modulation has been suggested to involve pre-synaptic auto-receptors; however, their underlying mechanisms of action remain unclear. Previous studies with the well-defined C. elegans nervous system have used functional imaging to implicate acid sensing ion channels (ASIC-1) to describe synaptic vesicle fusion dynamics within its eight dopaminergic neurons. Implementing a similar imaging approach with a pH-sensitive fluorescent reporter and fluorescence resonance after photobleaching (FRAP), we analyzed dynamic imaging data collected from individual synaptic termini in live animals. We present evidence that constitutive fusion of neurotransmitter vesicles on dopaminergic synaptic termini is modulated through DOP-2 auto-receptors via a negative feedback loop. Integrating our previous results showing the role of ASIC-1 in a positive feedback loop, we also put forth an updated model for synaptic vesicle fusion in which, along with DAT-1 and ASIC-1, the dopamine auto-receptor DOP-2 lies at a modulatory hub at dopaminergic synapses. Our findings are of potential broader significance as similar mechanisms are likely to be used by auto-receptors for other small molecule neurotransmitters across species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.22131DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336876PMC
January 2020

GPA-14, a Gα(i) subunit mediates dopaminergic behavioral plasticity in C. elegans.

Behav Brain Funct 2013 Apr 22;9:16. Epub 2013 Apr 22.

Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA.

Background: Precise levels of specific neurotransmitters are required for appropriate neuronal functioning. The neurotransmitter dopamine is implicated in modulating behaviors, such as cognition, reward and memory. In the nematode Caenorhabditis elegans, the release of dopamine during behavioral plasticity is in part modulated through an acid-sensing ion channel expressed in its eight dopaminergic neurons. A D2-like C. elegans dopamine receptor DOP-2 co-expresses along with a Gα(i) subunit (GPA-14) in the anterior deirid (ADE) pair of dopaminergic neurons.

Findings: In follow-up experiments to our recently reported in vitro physical interaction between DOP-2 and GPA-14, we have behaviorally characterized worms carrying deletion mutations in gpa-14 and/or dop-2. We found both mutants to display behavioral abnormalities in habituation as well as associative learning, and exogenous supply of dopamine was able to revert the observed behavioral deficits. The behavioral phenotypes of dop-2 and gpa-14 loss-of-function mutants were found to be remarkably similar, and we did not observe any cumulative defects in their double mutants.

Conclusion: Our results provide genetic and phenotypic support to our earlier in vitro results where we had shown that the DOP-2 dopamine receptor and the GPA-14 Gα(i) subunit physically interact with each other. Results from behavioral experiments presented here together with our previous in-vitro work suggests that the DOP-2 functions as a dopamine auto-receptor to modulate two types of learning, anterior touch habituation and chemosensory associative conditioning, through a G-protein complex that comprises GPA-14 as its Gα subunit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1744-9081-9-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679979PMC
April 2013