Publications by authors named "Rosalía Cristina Paz"

6 Publications

  • Page 1 of 1

Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences.

Chromosome Res 2021 Jun 4. Epub 2021 Jun 4.

Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.

Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10577-021-09663-4DOI Listing
June 2021

Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum.

Genetica 2017 Oct 3;145(4-5):417-430. Epub 2017 Aug 3.

IBAM, Universidad Nacional de Cuyo, CONICET, FCA and FCEN, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.

Transposable elements are the most abundant components of plant genomes and can dramatically induce genetic changes and impact genome evolution. In the recently sequenced genome of tomato (Solanum lycopersicum), the estimated fraction of elements corresponding to retrotransposons is nearly 62%. Given that tomato is one of the most important vegetable crop cultivated and consumed worldwide, understanding retrotransposon dynamics can provide insight into its evolution and domestication processes. In this study, we performed a genome-wide in silico search of full-length LTR retroelements in the tomato nuclear genome and annotated 736 full-length Gypsy and Copia retroelements. The dispersion level across the 12 chromosomes, the diversity and tissue-specific expression of those elements were estimated. Phylogenetic analysis based on the retrotranscriptase region revealed the presence of 12 major lineages of LTR retroelements in the tomato genome. We identified 97 families, of which 77 and 20 belong to the superfamilies Copia and Gypsy, respectively. Each retroelement family was characterized according to their element size, relative frequencies and insertion time. These analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in tomato.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10709-017-9977-7DOI Listing
October 2017

Macro- and microclimate conditions may alter grapevine deacclimation: variation in thermal amplitude in two contrasting wine regions from North and South America.

Int J Biometeorol 2017 Dec 17;61(12):2033-2045. Epub 2017 Jul 17.

Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA, CCT-CONICET-Mendoza, Av. Ruiz Leal s/n, Parque Gral. San Martín,, PO Box 5500, CC 330, Mendoza, Argentina.

Low temperature is a limiting factor that affects vineyard distribution globally. The level of cold hardiness acquired during the dormant season by Vitis sp. is crucial for winter survival. Most research published on this topic has been generated beyond 40° N latitude, where daily mean temperatures may attain injurious levels during the dormant season resulting in significant damage to vines and buds. Symptoms of cold injury have been identified in Mendoza (32-35° S latitude), a Southern Hemisphere wine region characterized by a high thermal amplitude, and warm winds during the dormant season. These symptoms have usually been attributed to drought and/or pathogens, but not to rapid deacclimation followed by injurious low temperatures. Because local information on meteorological events as probable causes is scarce, this research was designed to test and study this assumption by comparing macro-, meso-, and microclimatic data from Mendoza, Argentina, and eastern Washington, USA. The goal was to unveil why freezing damage has occurred in both regions, despite the existence of large climatic differences. Because environmental parameters under field conditions may not correspond to data recorded by conventional weather stations, sensors were installed in vineyards for comparison. Microclimatic conditions on grapevines were also evaluated to assess the most vulnerable portions of field-grown grapevines. In order to better understand if it may be possible to modify cold hardiness status in a short period with high thermal amplitude conditions, deacclimation was induced using a thermal treatment. Hence, despite the fact that Mendoza is warmer, and temperatures are not as extreme as in Washington, high daily thermal amplitude might be partially involved in plant deacclimation, leading to a differential cold hardiness response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-017-1400-7DOI Listing
December 2017

Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation.

Plant Cell Rep 2016 Jan;35(1):129-41

Key Message: This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-015-1874-xDOI Listing
January 2016

Identification of differentially expressed genes potentially involved in the tolerance of Lotus tenuis to long-term alkaline stress.

Plant Physiol Biochem 2014 Sep 3;82:279-88. Epub 2014 Jul 3.

Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina. Electronic address:

Soil alkalinity is one of the most serious agricultural problems limiting crop yields. The legume Lotus tenuis is an important forage acknowledged by its ability to naturally grow in alkaline soils. To gain insight into the molecular responses that are activated by alkalinity in L. tenuis plants, subtractive cDNA libraries were generated from leaves and roots of these plants. Total RNAs of non-stressed plants (pH 5.8; E.C. 1.2), and plants stressed by the addition of 10 mM of NaHCO3 (pH 9.0; E.C. 1.9), were used as source of the driver and the tester samples, respectively. RNA samples were collected after 14 and 28 days of treatment. A total of 158 unigenes from leaves and 92 unigenes from roots were obtained and classified into 11 functional categories. Unigenes from these categories (4 for leaves and 8 for roots), that were related with nutrient metabolism and oxidative stress relief were selected, and their differential expression analyzed by qRT-PCR. These genes were found to be differentially expressed in a time dependent manner in L. tenuis during the alkaline stress application. Data generated from this study will contribute to the understanding of the general molecular mechanisms associated to plant tolerance under long-term alkaline stress in plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2014.06.009DOI Listing
September 2014

Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis in this region.

Antonie Van Leeuwenhoek 2011 Feb 2;99(2):371-9. Epub 2010 Sep 2.

Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas- Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Camino de Circunvalación Km 6, CC 164 (7130), Chascomús, Argentina.

The Flooding Pampa (FP) is the most important area for cattle breeding in Argentina. In this region, persistence and yield of typical forage legumes are strongly limited by soil salinity and alkalinity, which affect around 30% of the total area. Instead, naturalized Lotus tenuis is the main forage legume in this region. Rhizobial strains currently used for inoculating L. tenuis in the FP are exotic or native from non-saline soils of this region, their taxonomic identity being unknown. Assuming that rhizobia native from the most restrictive environments are well adapted to adverse conditions, the use of such isolates could improve the productivity of L. tenuis in the FP. Hence, the goal of this study was to evaluate the symbiotic efficiency of selected L. tenuis rhizobia native from the FP, as compared with strains currently used for field inoculation of this legume. Under non-stressing conditions, the symbiotic performance of native strains of FP exceeded those ones currently used for L. tenuis. Moreover, the symbiotic performance of the native strain ML103 was considerably high under salt stress, compared with strains currently used as inoculants. Analysis of 16S rRNA gene sequencing revealed that unclassified rhizobia currently used for field inoculation of L. tenuis and native strains grouped with the genus Mesorhizobium. As a whole, results obtained demonstrate that soils of the FP are a source of efficient and diverse rhizobia that could be used as a sustainable agronomic tool to formulate inoculants that improve forage yield of L. tenuis in this region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10482-010-9502-9DOI Listing
February 2011
-->