Publications by authors named "Rosa Rebollar-Vega"

10 Publications

  • Page 1 of 1

Comprehensive omic characterization of breast cancer in Mexican-Hispanic women.

Nat Commun 2021 04 14;12(1):2245. Epub 2021 Apr 14.

Cancer Genomics Laboratory, National Institute of Genomic Medicine, México City, Mexico.

Breast cancer is a heterogeneous pathology, but the genomic basis of its variability remains poorly understood in populations other than Caucasians. Here, through DNA and RNA portraits we explored the molecular features of breast cancers in a set of Hispanic-Mexican (HM) women and compared them to public multi-ancestry datasets. HM patients present an earlier onset of the disease, particularly in aggressive clinical subtypes, compared to non-Hispanic women. The age-related COSMIC signature 1 was more frequent in HM women than in those from other ancestries. We found the AKT1 hotspot mutation in 8% of the HM women and identify the AKT1/PIK3CA axis as a potentially druggable target. Also, HM luminal breast tumors present an enhanced immunogenic phenotype compared to Asiatic and Caucasian tumors. This study is an initial effort to include patients from Hispanic populations in the research of breast cancer etiology and biology to further understand breast cancer disparities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22478-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8046804PMC
April 2021

A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype.

Sci Rep 2020 08 4;10(1):13146. Epub 2020 Aug 4.

Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.

Breast cancer is the most commonly diagnosed neoplasm in women worldwide with a well-recognized heterogeneous pathology, classified into four molecular subtypes: Luminal A, Luminal B, HER2-enriched and Basal-like, each one with different biological and clinical characteristics. Long non-coding RNAs (lncRNAs) represent 33% of the human transcriptome and play critical roles in breast carcinogenesis, but most of their functions are still unknown. Therefore, cancer research could benefit from continued exploration into the biology of lncRNAs in this neoplasm. We characterized lncRNA expression portraits in 74 breast tumors belonging to the four molecular subtypes using transcriptome microarrays. To infer the biological role of the deregulated lncRNAs in the molecular subtypes, we performed co-expression analysis of lncRNA-mRNA and gene ontology analysis. We identified 307 deregulated lncRNAs in tumor compared to normal tissue and 354 deregulated lncRNAs among the different molecular subtypes. Through co-expression analysis between lncRNAs and protein-coding genes, along with gene enrichment analysis, we inferred the potential function of the most deregulated lncRNAs in each molecular subtype, and independently validated our results taking advantage of TCGA data. Overexpression of the AC009283.1 was observed in the HER2-enriched subtype and it is localized in an amplification zone at chromosome 17q12, suggesting it to be a potential tumorigenic lncRNA. The functional role of lncRNA AC009283.1 was examined through loss of function assays in vitro and determining its impact on global gene expression. These studies revealed that AC009283.1 regulates genes involved in proliferation, cell cycle and apoptosis in a HER2 cellular model. We further confirmed these findings through ssGSEA and CEMITool analysis in an independent HER2-amplified breast cancer cohort. Our findings suggest a wide range of biological functions for lncRNAs in each breast cancer molecular subtype and provide a basis for their biological and functional study, as was conducted for AC009283.1, showing it to be a potential regulator of proliferation and apoptosis in the HER2-enriched subtype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-69905-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403317PMC
August 2020

Evidence for the Effect of Vaccination on Host-Pathogen Interactions in a Murine Model of Pulmonary Tuberculosis by .

Front Immunol 2020 19;11:930. Epub 2020 May 19.

Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.

The global control of Tuberculosis remains elusive, and Bacillus Calmette-Guérin (BCG) -the most widely used vaccine in history-has proven insufficient for reversing this epidemic. Several authors have suggested that the mass presence of vaccinated hosts might have affected the (MTB) population structure, and this could in turn be reflected in a prevalence of strains with higher ability to circumvent BCG-induced immunity, such as the recent Beijing genotype. The effect of vaccination on vaccine-escape variants has been well-documented in several bacterial pathogens; however the effect of the interaction between MTB strains and vaccinated hosts has never been previously described. In this study we show for the first time the interaction between MTB Beijing-genotype strains and BCG-vaccinated hosts. Using a well-controlled murine model of progressive pulmonary tuberculosis, we vaccinated BALB/c mice with two different sub-strains of BCG (BCG-Phipps and BCG-Vietnam). Following vaccination, the mice were infected with either one of three selected MTB strains. Strains were selected based on lineage, and included two Beijing-family clinical isolates (strains 46 and 48) and a well-characterized laboratory strain (H37Rv). Two months after infection, mice were euthanized and the bacteria extracted from their lungs. We characterized the genomic composite of the bacteria before and after exposure to vaccinated hosts, and also characterized the local response to the bacteria by sequencing the lung transcriptome in animals during the infection. Results from this study show that the interaction within the lungs of the vaccinated hosts results in the selection of higher-virulence bacteria, specifically for the Beijing genotype strains 46 and 48. After exposure to the BCG-induced immune response, strains 46 and 48 acquire genomic mutations associated with several virulence factors. As a result, the bacteria collected from these vaccinated hosts have an increased ability for immune evasion, as shown in both the host transcriptome and the histopathology studies, and replicates far more efficiently compared to bacteria collected from unvaccinated hosts or to the original-stock strain. Further research is warranted to ascertain the pathways associated with the genomic alterations. However, our results highlight novel host-pathogen interactions induced by exposure of MTB to BCG vaccinated hosts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.00930DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7248268PMC
March 2021

Expression of long non-coding RNA ENSG00000226738 (LncKLHDC7B) is enriched in the immunomodulatory triple-negative breast cancer subtype and its alteration promotes cell migration, invasion, and resistance to cell death.

Mol Oncol 2019 04 9;13(4):909-927. Epub 2019 Feb 9.

Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico.

Triple negative breast cancer (TNBC) represents an aggressive phenotype with poor prognosis compared with ER, PR, and HER2-positive tumors. TNBC is a heterogeneous disease, and gene expression analysis has identified seven molecular subtypes. Accumulating evidence demonstrates that long non-coding RNA (lncRNA) are involved in regulation of gene expression and cancer biology, contributing to essential cancer cell functions. In this study, we analyzed the expression profile of lncRNA in TNBC subtypes from 156 TNBC samples, and then characterized the functional role of LncKLHDC7B (ENSG00000226738). A total of 710 lncRNA were found to be differentially expressed between TNBC subtypes, and a subset of these altered lncRNA were independently validated. We discovered that LncKLHDC7B (ENSG00000226738) acts as a transcriptional modulator of its neighboring coding gene KLHDC7B in the immunomodulatory subtype. Furthermore, LncKLHDC7B knockdown enhanced migration and invasion, and promoted resistance to cellular death. Our findings confirmed the contribution of LncKLHDC7B to induction of apoptosis and inhibition of cell migration and invasion, suggesting that TNBC tumors with enrichment of LncKLHDC7B may exhibit distinct regulatory activity, or that this may be a generalized process in breast cancer. Additionally, in silico analysis confirmed for the first time that the low expression of KLHDC7B and LncKLHDC7B is associated with poor prognosis in patients with breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/1878-0261.12446DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6441920PMC
April 2019

[Clinical Applications of Next-Generation Sequencing].

Rev Invest Clin 2018 ;70(4):153-157

Genomics Laboratory, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México - Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

The significant drop in sequencing costs boosted by chemistries optimization and sample multiplexation has resulted in an immense growth within the field of next-generation sequencing (NGS) in the last decade. This has allowed a diversification of techniques, promoting a rapid advance in knowledge on the molecular basis of human disease. Due to the applicability and importance of this technology in basic research, it has quickly migrated to the clinical setting. NGS enables clinicians to make improved diagnostic and treatment decisions, which ultimately may influence precision medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.24875/RIC.18002544DOI Listing
December 2018

Molecular features of influenza A (H1N1)pdm09 prevalent in Mexico during winter seasons 2012-2014.

PLoS One 2017 10;12(7):e0180419. Epub 2017 Jul 10.

Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.

Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009) virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180419PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503254PMC
September 2017

Sequence analysis of mutations and translocations across breast cancer subtypes.

Nature 2012 Jun 20;486(7403):405-9. Epub 2012 Jun 20.

The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.

Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature11154DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148686PMC
June 2012

Identification and pathway analysis of microRNAs with no previous involvement in breast cancer.

PLoS One 2012 16;7(3):e31904. Epub 2012 Mar 16.

Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica. Mexico City, Mexico.

microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031904PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306365PMC
August 2012

Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster.

Food Chem Toxicol 2010 Jan 26;48(1):120-8. Epub 2009 Sep 26.

Genetic Toxicology, Biology, FES Iztacala, Universidad Nacional Autónoma de México, 54090 Tlalnepantla, Estado de México, Mexico.

Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2009.09.027DOI Listing
January 2010