Publications by authors named "Ronnie M Russell"

16 Publications

  • Page 1 of 1

SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence.

PLoS Pathog 2021 07 16;17(7):e1009761. Epub 2021 Jul 16.

Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.

T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 26 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mounted at least one CD4 T-cell response, and 48% of individuals mounted detectable SARS-CoV-2-specific circulating T follicular helper cells (cTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific cTfh responses across all three protein specificities correlated with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, cTfh responses, particularly to the M protein, increased in convalescence, and robust cTfh responses with magnitudes greater than 5% were detected at the second convalescent visit, a median of 38 days post-symptom onset. CD4 T-cell responses declined but persisted at low magnitudes three months and six months after symptom onset. These data deepen our understanding of antigen-specific cTfh responses in SARS-CoV-2 infection, suggesting that in addition to S protein, M and N protein-specific cTfh may also assist in the development of neutralizing antibodies and that cTfh response formation may be delayed in SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1009761DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318272PMC
July 2021

Predictors of Nonseroconversion after SARS-CoV-2 Infection.

Emerg Infect Dis 2021 09 30;27(9):2454-2458. Epub 2021 Jun 30.

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3201/eid2709.211042DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386781PMC
September 2021

CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses.

Proc Natl Acad Sci U S A 2021 Mar;118(13)

Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo.

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of -linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons ( spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2025914118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020793PMC
March 2021

Targeting androgen regulation of TMPRSS2 and ACE2 as a therapeutic strategy to combat COVID-19.

iScience 2021 Mar 1;24(3):102254. Epub 2021 Mar 1.

Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA.

Epidemiological data showing increased severity and mortality of COVID-19 in men suggests a potential role for androgen in SARS-CoV-2 infection. Here, we present evidence for the transcriptional regulation of SARS-CoV-2 host cell receptor ACE2 and TMPRSS2 by androgen in mouse and human cells. Additionally, we demonstrate the endogenous interaction between TMPRSS2 and ACE2 in human cells and validate ACE2 as a TMPRSS2 substrate. Furthermore, camostat-a TMPRSS2 inhibitor-blocked the cleavage of pseudotype SARS-CoV-2 surface Spike without disrupting TMPRSS2-ACE2 interaction, thus providing evidence for the first time of a direct role of TMPRSS2 in priming the SARS-CoV-2 Spike, required for viral fusion to the host cell. Importantly, androgen-deprivation, anti-androgens, or camostat attenuated the SARS-CoV-2 S-mediated cellular entry. Together, our data provide a strong rationale for clinical evaluations of TMPRSS2 inhibitors and androgen-deprivation therapy/androgen receptor antagonists alone or in combination with antiviral drugs as early as clinically possible to prevent COVID-19 progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isci.2021.102254DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919514PMC
March 2021

Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency.

Cell Rep Med 2021 Jan 5;2(1):100164. Epub 2020 Dec 5.

Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Convalescent plasma (CP) is widely used to treat COVID-19, but without formal evidence of efficacy. Here, we report the beneficial effects of CP in a severely ill COVID-19 patient with prolonged pneumonia and advanced chronic lymphocytic leukemia (CLL), who was unable to generate an antiviral antibody response of her own. On day 33 after becoming symptomatic, the patient received CP containing high-titer (ID > 5,000) neutralizing antibodies (NAbs), defervesced, and improved clinically within 48 h and was discharged on day 37. Hence, when present in sufficient quantities, NAbs to SARS-CoV-2 have clinical benefit even if administered relatively late in the disease course. However, analysis of additional CP units revealed widely varying NAb titers, with many recipients exhibiting endogenous NAb responses far exceeding those of the administered units. To obtain the full therapeutic benefits of CP immunotherapy, it will thus be important to determine the neutralizing activity in both CP units and transfusion candidates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xcrm.2020.100164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817775PMC
January 2021

Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption.

Sci Transl Med 2021 01;13(576)

Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA.

Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4 T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4 T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abd8179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923595PMC
January 2021

Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth.

Science 2021 01 19;371(6525). Epub 2020 Nov 19.

Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Neutralizing antibodies elicited by HIV-1 coevolve with viral envelope proteins (Env) in distinctive patterns, in some cases acquiring substantial breadth. We report that primary HIV-1 envelope proteins-when expressed by simian-human immunodeficiency viruses in rhesus macaques-elicited patterns of Env-antibody coevolution very similar to those in humans, including conserved immunogenetic, structural, and chemical solutions to epitope recognition and precise Env-amino acid substitutions, insertions, and deletions leading to virus persistence. The structure of one rhesus antibody, capable of neutralizing 49% of a 208-strain panel, revealed a V2 apex mode of recognition like that of human broadly neutralizing antibodies (bNAbs) PGT145 and PCT64-35S. Another rhesus antibody bound the CD4 binding site by CD4 mimicry, mirroring human bNAbs 8ANC131, CH235, and VRC01. Virus-antibody coevolution in macaques can thus recapitulate developmental features of human bNAbs, thereby guiding HIV-1 immunogen design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abd2638DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040783PMC
January 2021

SARS-CoV-2-specific peripheral T follicular helper cells correlate with neutralizing antibodies and increase during convalescence.

medRxiv 2020 Oct 12. Epub 2020 Oct 12.

Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 21 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mount at least one CD4 T-cell response, and 48% of individuals mount detectable SARS-CoV-2-specific peripheral T follicular helper cells (pTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific pTfh responses across all three protein specificities correlate with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, pTfh responses increase in frequency and magnitude in convalescence, and robust responses with magnitudes greater than 5% were detected only at the second convalescent visit, an average of 38 days post-symptom onset. These data deepen our understanding of antigen-specific pTfh responses in SARS-CoV-2 infection, suggesting that M and N protein-specific pTfh may also assist in the development of neutralizing antibodies and that pTfh response formation may be delayed in SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.10.07.20208488DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553179PMC
October 2020

CD4 receptor diversity in chimpanzees protects against SIV infection.

Proc Natl Acad Sci U S A 2019 02 4;116(8):3229-3238. Epub 2019 Feb 4.

Sanaga-Yong Chimpanzee Rescue Center, In Defense of Animals-Africa, Portland, OR 97204.

Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4 T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1821197116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386711PMC
February 2019

Viral Genetics Modulate Orolabial Herpes Simplex Virus Type 1 Shedding in Humans.

J Infect Dis 2019 03;219(7):1058-1066

Department of Medicine, University of Washington, Seattle, Washington.

Background: Orolabial herpes simplex virus type 1 (HSV-1) infection has a wide spectrum of severity in immunocompetent persons. To study the role of viral genotype and host immunity, we characterized oral HSV-1 shedding rates and host cellular response, and genotyped viral strains, in monozygotic (MZ) and dizygotic (DZ) twins.

Methods: A total of 29 MZ and 22 DZ HSV-1-seropositive twin pairs were evaluated for oral HSV-1 shedding for 60 days. HSV-1 strains from twins were genotyped as identical or different. CD4+ T-cell responses to HSV-1 proteins were studied.

Results: The median per person oral HSV shedding rate was 9% of days that a swab was obtained (mean, 10.2% of days). A positive correlation between shedding rates was observed within all twin pairs, and in the MZ and DZ twins. In twin subsets with sufficient HSV-1 DNA to genotype, 15 had the same strain and 14 had different strains. Viral shedding rates were correlated for those with the same but not different strains. The median number of HSV-1 open reading frames recognized per person was 16. The agreement in the CD4+ T-cell response to specific HSV-1 open reading frames was greater between MZ twins than between unrelated persons (P = .002).

Conclusion: Viral strain characteristics likely contribute to oral HSV-1 shedding rates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiy631DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420167PMC
March 2019

CHIIMP: An automated high-throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees.

Ecol Evol 2018 Aug 16;8(16):7946-7963. Epub 2018 Jul 16.

Departments of Microbiology and Medicine Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania.

Short tandem repeats (STRs), also known as microsatellites, are commonly used to noninvasively genotype wild-living endangered species, including African apes. Until recently, capillary electrophoresis has been the method of choice to determine the length of polymorphic STR loci. However, this technique is labor intensive, difficult to compare across platforms, and notoriously imprecise. Here we developed a MiSeq-based approach and tested its performance using previously genotyped fecal samples from long-term studied chimpanzees in Gombe National Park, Tanzania. Using data from eight microsatellite loci as a reference, we designed a bioinformatics platform that converts raw MiSeq reads into locus-specific files and automatically calls alleles after filtering stutter sequences and other PCR artifacts. Applying this method to the entire Gombe population, we confirmed previously reported genotypes, but also identified 31 new alleles that had been missed due to sequence differences and size homoplasy. The new genotypes, which increased the allelic diversity and heterozygosity in Gombe by 61% and 8%, respectively, were validated by replicate amplification and pedigree analyses. This demonstrated inheritance and resolved one case of an ambiguous paternity. Using both singleplex and multiplex locus amplification, we also genotyped fecal samples from chimpanzees in the Greater Mahale Ecosystem in Tanzania, demonstrating the utility of the MiSeq-based approach for genotyping nonhabituated populations and performing comparative analyses across field sites. The new automated high-throughput analysis platform (available at https://github.com/ShawHahnLab/chiimp) will allow biologists to more accurately and effectively determine wildlife population size and structure, and thus obtain information critical for conservation efforts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.4302DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145012PMC
August 2018

Worldwide circulation of HSV-2 × HSV-1 recombinant strains.

Sci Rep 2017 03 13;7:44084. Epub 2017 Mar 13.

Department of Medicine, University of Washington, Seattle, WA 98195, USA.

Homo sapiens harbor two distinct, medically significant species of simplexviruses, herpes simplex virus (HSV)-1 and HSV-2, with estimated divergence 6-8 million years ago (MYA). Unexpectedly, we found that circulating HSV-2 strains can contain HSV-1 DNA segments in three distinct genes. Using over 150 genital swabs from North and South America and Africa, we detected recombinants worldwide. Common, widely distributed gene UL39 genotypes are parsimoniously explained by an initial >457 basepair (bp) HSV-1 × HSV-2 crossover followed by back-recombination to HSV-2. Blocks of >244 and >539 bp of HSV-1 DNA within genes UL29 and UL30, respectively, have reached near fixation, with a minority of strains retaining sequences we posit as ancestral HSV-2. Our data add to previous in vitro and animal work, implying that in vivo cellular co-infection with HSV-1 and HSV-2 yields viable interspecies recombinants in the natural human host.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep44084DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347006PMC
March 2017

Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness.

Proc Natl Acad Sci U S A 2017 01 9;114(4):E590-E599. Epub 2017 Jan 9.

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;

Sexual transmission of HIV-1 is an inefficient process, with only one or few variants of the donor quasispecies establishing the new infection. A critical, and as yet unresolved, question is whether the mucosal bottleneck selects for viruses with increased transmission fitness. Here, we characterized 300 limiting dilution-derived virus isolates from the plasma, and in some instances genital secretions, of eight HIV-1 donor and recipient pairs. Although there were no differences in the amount of virion-associated envelope glycoprotein, recipient isolates were on average threefold more infectious (P = 0.0001), replicated to 1.4-fold higher titers (P = 0.004), were released from infected cells 4.2-fold more efficiently (P < 0.00001), and were significantly more resistant to type I IFNs than the corresponding donor isolates. Remarkably, transmitted viruses exhibited 7.8-fold higher IFNα2 (P < 0.00001) and 39-fold higher IFNβ (P < 0.00001) half-maximal inhibitory concentrations (IC) than did donor isolates, and their odds of replicating in CD4 T cells at the highest IFNα2 and IFNβ doses were 35-fold (P < 0.00001) and 250-fold (P < 0.00001) greater, respectively. Interestingly, pretreatment of CD4 T cells with IFNβ, but not IFNα2, selected donor plasma isolates that exhibited a transmitted virus-like phenotype, and such viruses were also detected in the donor genital tract. These data indicate that transmitted viruses are phenotypically distinct, and that increased IFN resistance represents their most distinguishing property. Thus, the mucosal bottleneck selects for viruses that are able to replicate and spread efficiently in the face of a potent innate immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1620144114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278458PMC
January 2017

Extensive CD4 and CD8 T Cell Cross-Reactivity between Alphaherpesviruses.

J Immunol 2016 Mar 25;196(5):2205-2218. Epub 2016 Jan 25.

Department of Medicine, University of Washington, Seattle, USA.

The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity. HSV-specific CD4 T cells recovered from HSV-seronegative persons can be explained, in part, by such VZV cross-reactivity. HSV-1-reactive CD8 T cells also cross-react with VZV-infected cells, full-length VZV proteins, and VZV peptides, as well as kill VZV-infected dermal fibroblasts. Mono- and cross-reactive CD8 T cells use distinct TCRB CDR3 sequences. Cross-reactivity to VZV is reconstituted by cloning and expressing TCRA/TCRB receptors from T cells that are initially isolated using HSV reagents. Overall, we define 13 novel CD4 and CD8 HSV-VZV cross-reactive epitopes and strongly imply additional cross-reactive peptide sets. Viral proteins can harbor both CD4 and CD8 HSV/VZV cross-reactive epitopes. Quantitative estimates of HSV/VZV cross-reactivity for both CD4 and CD8 T cells vary from 10 to 50%. Based on these findings, we hypothesize that host herpesvirus immune history may influence the pathogenesis and clinical outcome of subsequent infections or vaccinations for related pathogens and that cross-reactive epitopes and TCRs may be useful for multi-alphaherpesvirus vaccine design and adoptive cellular therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1502366DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761520PMC
March 2016

Identification of novel Mycobacterium tuberculosis CD4 T-cell antigens via high throughput proteome screening.

Tuberculosis (Edinb) 2015 May 27;95(3):275-87. Epub 2015 Mar 27.

Department of Medicine, Division of Infectious Diseases, University of Washington, Box 358061, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Box 359931, Seattle, WA 98195, USA; Benaroya Research Institute at Virginia Mason, 1201 9th Ave., Seattle, WA, 98101, USA; Department of Laboratory Medicine, University of Washington, Box 358070, Seattle, WA 98195, USA; Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave. East, Seattle, WA 98109, USA. Electronic address:

Elicitation of CD4 IFN-gamma T cell responses to Mycobacterium tuberculosis (MTB) is a rational vaccine strategy to prevent clinical tuberculosis. Diagnosis of MTB infection is based on T-cell immune memory to MTB antigens. The MTB proteome contains over four thousand open reading frames (ORFs). We conducted a pilot antigen identification study using 164 MTB proteins and MTB-specific T-cells expanded in vitro from 12 persons with latent MTB infection. Enrichment of MTB-reactive T-cells from PBMC used cell sorting or an alternate system compatible with limited resources. MTB proteins were used as single antigens or combinatorial matrices in proliferation and cytokine secretion readouts. Overall, our study found that 44 MTB proteins were antigenic, including 27 not previously characterized as CD4 T-cell antigens. Antigen truncation, peptide, NTM homology, and HLA class II tetramer studies confirmed malate synthase G (encoded by gene Rv1837) as a CD4 T-cell antigen. This simple, scalable system has potential utility for the identification of candidate MTB vaccine and biomarker antigens.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2015.03.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618479PMC
May 2015

Zoster Vaccination Increases the Breadth of CD4+ T Cells Responsive to Varicella Zoster Virus.

J Infect Dis 2015 Oct 17;212(7):1022-31. Epub 2015 Mar 17.

Department of Medicine, University of Washington, Seattle Department of Laboratory Medicine Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington Department of Global Health, University of Washington Benaroya Research Institute, Seattle, Washington.

Background: The live, attenuated varicella vaccine strain (vOka) is the only licensed therapeutic vaccine. Boost of varicella zoster virus (VZV)-specific cellular immunity is a likely mechanism of action. We examined memory CD4(+) T-cell responses to each VZV protein at baseline and after zoster vaccination.

Methods: Serial blood samples were collected from 12 subjects vaccinated with Zostavax and immunogenicity confirmed by ex vivo VZV-specific T-cell and antibody assays. CD4(+) T-cell lines enriched for VZV specificity were generated and probed for proliferative responses to every VZV protein and selected peptide sets.

Results: Zoster vaccination increased the median magnitude (2.3-fold) and breadth (4.2-fold) of VZV-specific CD4(+) T cells one month post-vaccination. Both measures declined by 6 months. The most prevalent responses at baseline included VZV open reading frames (ORFs) 68, 4, 37, and 63. After vaccination, responses to ORFs 40, 67, 9, 59, 12, 62, and 18 were also prevalent. The immunogenicity of ORF9 and ORF18 were confirmed using peptides, defining a large number of discrete CD4 T-cell epitopes.

Conclusions: The breadth and magnitude of the VZV-specific CD4(+) T-cell response increase after zoster vaccination. In addition to glycoprotein E (ORF68), we identified antigenic ORFs that may be useful components of subunit vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiv164DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559191PMC
October 2015
-->