Publications by authors named "Rone De Grandis"

16 Publications

  • Page 1 of 1

A Novel Ruthenium(II) Complex With Lapachol Induces G2/M Phase Arrest Through Aurora-B Kinase Down-Regulation and ROS-Mediated Apoptosis in Human Prostate Adenocarcinoma Cells.

Front Oncol 2021 24;11:682968. Epub 2021 Jun 24.

School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil.

Lapachol is a well-studied natural product that has been receiving great interest due to its anticancer properties that target oxidative stress. In the present work, two novel lapachol-containing ruthenium(II) complexes [Ru(Lap)(dppm)(bipy)]PF () and [Ru(Lap)(dppm)(phen)]PF () [Lap = lapachol, dppm = 1,1'-bis(diphosphino)methane, bipy = 2,2'-bipyridine, phen = 1,10-phenantroline] were synthesized, fully characterized, and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures, as well as in a 3D model of multicellular spheroids formed from DU-145 human prostate adenocarcinoma cells. Furthermore, the complex () suppressed the colony formation, induced G2/M-phase arrest, and downregulated Aurora-B. The mechanism studies suggest that complex () stimulate the overproduction of reactive oxygen species (ROS) and triggers caspase-dependent apoptosis as a result of changes in expression of several genes related to cell proliferation and caspase-3 and -9 activation. Interestingly, we found that N-acetyl-L-cysteine, a ROS scavenger, suppressed the generation of intracellular ROS induced by complex (), and decreased its cytotoxicity, indicating that ROS-mediated DNA damage leads the DU-145 cells into apoptosis. Overall, we highlighted that coordination of lapachol to phosphinic ruthenium(II) compounds considerably improves the antiproliferative activities of resulting complexes granting attractive selectivity to human prostate adenocarcinoma cells. The DNA damage response to ROS seems to be involved in the induction of caspase-mediated cell death that plays an important role in the complexes' cytotoxicity. Upon further investigations, this novel class of lapachol-containing ruthenium(II) complexes might indicate promising chemotherapeutic agents for prostate cancer therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2021.682968DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264259PMC
June 2021

Hydroalcoholic Extract of Myrcia bella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential.

Planta Med 2021 Jan 28. Epub 2021 Jan 28.

University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil.

is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of loaded on the microemulsion against sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Typhimurium tester strains. either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus sp.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1323-3622DOI Listing
January 2021

Effects of sulforaphane on the oxidative response, apoptosis, and the transcriptional profile of human stomach mucosa cells in vitro.

Mutat Res 2020 Jun - Jul;854-855:503201. Epub 2020 May 31.

Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil. Electronic address:

Oxidative stress is a critical factor in the pathogenesis of several gastrointestinal diseases. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, activates the redox-sensitive nuclear erythroid 2-related factor 2 (NRF2). In addition to its protective role, SFN exerts cytotoxic effects on cancer cells. However, there is a lack of information concerning the toxicity of SFN in normal cells. We investigated the effects of SFN on cell viability, antioxidant defenses, and gene expression in human stomach mucosa cells (MNP01). SFN reduced ROS formation and protected the cells against induced oxidative stress but high concentrations increased apoptosis. An intermediate SFN concentration (8 μM) was chosen for RNA sequencing studies. We observed upregulation of genes of the NRF2 (antioxidant) pathway, the DNA damage response, and apoptosis signaling; whereas SFN downregulated cell cycle and DNA repair pathway genes. SFN may be cytoprotective at low concentrations and cytotoxic at high concentrations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2020.503201DOI Listing
October 2020

Cyto-genotoxic evaluation of novel anti-tubercular copper (II) complexes containing isoniazid-based ligands.

Regul Toxicol Pharmacol 2020 Jun 5;113:104653. Epub 2020 Apr 5.

UNIARA- University of Araraquara, Department of Biological Sciences and Health, CEP 14801-340, Araraquara, São Paulo, Brazil. Electronic address:

Considering the promising previous results of Cu (II) complexes with isoniazid active ligand against Mycobacterium tuberculosis, the main causative agent of tuberculosis, novel biological assays evaluating its toxicogenic potential were performed to ensure the safe use. The genotoxicity/mutagenicity of the complexes CuCl(INH).HO (I1), Cu(NCS)(INH).5HO (I2) and Cu(NCO)(INH).4HO (I3) was evaluated by the Comet, Micronucleus-cytome and Salmonella microsome (Ames test) assays. The cell viability using resazurin assay indicated that I1, I2 e I3 had moderate to low capacity to reduce the viability of colorectal cells (Caco-2), liver cells (HepG2), lung cells (GM 07492-A and A549) and endothelial cells (HU-VE-C). On genotoxicity/mutagenicity, I1 complex did not induce sizable levels of DNA damage in HepG2 cells (Comet assay), and gene (Ames test) and chromosomal (Micronucleus-cytome assay) mutations. Already, I2 and I3 complexes were considered mutagenic in the highest concentrations used. In light of the above, these results contribute to valuable data on the safe use of Cu(II) complexes. Considering the absence of mutagenicity and cytotoxicity of I1, this complex is a potential candidate for the development of a new drug to the treatment tuberculosis, while I2 and I3 require caution in its use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2020.104653DOI Listing
June 2020

Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells.

Food Chem Toxicol 2020 Feb 12;136:111047. Epub 2019 Dec 12.

Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil. Electronic address:

Abnormal epigenetic alterations are one of the keystones of cancer development. Epigenetic targeting drugs have become a promising and effective cancer therapy strategy. However, due to the high toxicity and unclear mechanisms of action of these drugs, natural compounds that cause epigenetic modulation have also been studied. Sulforaphane (SFN) is a promising bioactive compound for epigenetic targeting therapy. In this study, we investigate the effects of SFN on gene expression and DNA methylation in human hepatocellular carcinoma cells (HepG2). Using high throughput technologies in combination with cell-based assays, we find SFN is a potent anticancer agent, as it induces DNA damage, mitotic spindle abnormalities followed by apoptosis and proliferation inhibition in HepG2 cells. Our results show the upregulation of DNA damage response and cell cycle checkpoint genes. Also, we find the downregulation of cellular pathways frequently overexpressed in human cancer. As expected, SFN exerts epigenetic modulation effects by inhibiting histone deacetylases (HDACs). SFN might affect the activity of oncogenic transcription factors through methylation of its binding sites motifs. Our findings offer insights into SFN chemopreventive molecular effects in HepG2 cells and highlight SFN as a valuable natural approach to cancer therapy for future investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2019.111047DOI Listing
February 2020

Non-mutagenic Ru(ii) complexes: cytotoxicity, topoisomerase IB inhibition, DNA and HSA binding.

Dalton Trans 2019 Oct;48(39):14885-14897

Dipartimentodi Biologia, UniversitàTorVergatadi Roma, 00133 Rome, Italy.

Herein we discuss five ruthenium(ii) complexes with good cytotoxicity against cancer cells. These complexes are named [Ru(tzdt)(bipy)(dppb)]PF6 (1), [Ru(mmi)(bipy)(dppb)]PF6 (2), [Ru(dmp)(bipy)(dppb)]PF6 (3), [Ru(mpca)(bipy)(dppb)]PF6 (4) and [Ru(2mq)(bipy)(dppb)]PF6 (5), where tzdt = 1,3-thiazolidine-2-thione, mmi = mercapto-1-methyl-imidazole, dmp = 4,6-diamino-2-mercaptopyrimidine, mpca = 6-mercaptopyridine-3-carboxylic acid, 2mq = 2-mercapto-4(3H)-quinazolinone, bipy = 2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane. In vitro cell culture experiments revealed significant cytotoxic activity for 1-5 against MDA-MB-231, MCF-7, A549, DU-145 and HepG2 tumor cells, higher than that for the standard anticancer drug cisplatin. Compound/DNA interaction studies were carried out showing that 1-5 interact with DNA by electrostatic force of attraction or by hydrogen bonding. Moreover, the complexes interact, moderately and spontaneously, with human serum albumin (HSA) through the hydrophobic region. The five complexes are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (TopIB), and complex 1 is found to be the most efficient TopIB inhibitor among the five compounds. The inhibitory effect and analysis of different steps of the TopIB catalytic cycle indicate that complex 1 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and has no effect on the religation step. Complexes 1, 2 and 3 did not show mutagenic activity when they were evaluated by the cytokinesis-block micronucleus cytome assay in HepG2 cells and the Ames test in the presence and absence of mouse liver S9 metabolic activation. Therefore, it is necessary to perform further in-depth analysis of the therapeutic potential of these promising ruthenium complexes as anticancer drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9dt01905gDOI Listing
October 2019

Novel lawsone-containing ruthenium(II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells.

Bioorg Chem 2019 04 8;85:455-468. Epub 2019 Feb 8.

School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo 14800-903, Brazil. Electronic address:

This study describes a series of newly synthesized phosphine/diimine ruthenium complexes containing the lawsone as bioligand with enhanced cytotoxicity against different cancer cells, and apoptosis induction in prostatic cancer cells DU-145. The complexes [Ru(law)(N-N)]PF where N-N is 2,2'-bipyridine (1) or 1,10-phenanthroline (2) and [Ru(law)(dppm)(N-N)]PF, where dppm means bis(diphenylphosphino)methane, N-N is 2,2'-bipyridine (3) or 1,10-phenanthroline (4), and law is lawsone, were synthesized and fully characterized by elemental analysis, molar conductivity, NMR, UV-vis, IR spectroscopies and cyclic voltammetry. The interaction of the complexes (1-4) with DNA was evaluated by circular dichroism, gel electrophoresis, and fluorescence, and the complexes presented interactions by the minor grooves DNA. The phosphinic series of complexes exhibited a remarkably broad spectrum of anticancer activity with approximately 34-fold higher than cisplatin and 5-fold higher than doxorubicin, inhibiting the growth of 3D tumor spheroids and the ability to retain the colony survival of DU-145 cells. Also, the complex (4) inhibits DU-145 cell adhesion and migration potential indicating antimetastatic properties. The mechanism of its anticancer activity was found to be related to increased reactive oxygen species (ROS) generation, increased the BAX/BCL-2 ratio and subsequent apoptosis induction. Overall, these findings suggested that the complex (4) could be a promising candidate for further evaluation as a chemotherapeutic agent in the prostate cancer treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.02.010DOI Listing
April 2019

Evaluation of cytoprotective effects of compounds isolated from Desf. against induced cytotoxicity by exposure to methylmercury and lead.

Nat Prod Res 2020 Sep 9;34(17):2528-2532. Epub 2019 Jan 9.

Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil.

L. is one of the most known medicinal species in Brazil. Its leaves are rich in phenolic compounds with potential biological activities as an antioxidant and chelating agent. This paper reports the isolation of four compounds from the hydroalcoholic extract of the leaves of and the investigation of their possible cytoprotective effects against heavy metal poisoning. Quercitrin (1), afzelin (2), 3,5-di-O-(3-O-methyl galloyl) quinic acid (3) and 4,5-di-O-(3-O-methyl galloyl) quinic acid (4), were associated with toxic doses of methylmercury and lead and evaluated by Alamar blue cell viability assays in HepG2 and PC12. The compounds displayed significant cytoprotective effect for the HepG2 cell line against both metals. Compounds 1-4 did not protect PC12 cells against methylmercury induced-cytotoxicity, but at lower concentrations, they protected against lead induced-cytotoxicity. The evaluated compounds showed a promising cytoprotection effect against exposure to heavy metals and should be further investigated as protective agents.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2018.1543673DOI Listing
September 2020

Determination of in vitro absorption in Caco-2 monolayers of anticancer Ru(II)-based complexes acting as dual human topoisomerase and PARP inhibitors.

Biometals 2019 02 30;32(1):89-100. Epub 2018 Nov 30.

Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.

Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anticancer agents. Previous studies showed that three ruthenium(II) compounds: [Ru(pySH)(bipy)(dppb)]PF (1), [Ru(HSpym)(bipy)(dppb)]PF (2) and Ru[(SpymMe)(bipy)(dppb)]PF (3) presented anticancer properties higher than doxorubicin and cisplatin and acted as human topoisomerase IB (Topo I) inhibitors. Here, we focused our studies on in vitro intestinal permeability and anticancer mechanisms of these three complexes. Caco-2 permeation studies showed that 1 did not permeate the monolayer of intestinal cells, suggesting a lack of absorption on oral administration, while 2 and 3 permeated the cells after 60 and 120 min, respectively. Complexes 2 and 3 fully inhibited Topo II relaxation activity at 125 µM. In previously studies, 3 was the most potent inhibitor of Topo I, here, we concluded that it is a dual topoisomerase inhibitor. Moreover, it presented selectivity to cancer cells when evaluated by clonogenic assay. Thus, 3 was selected to gene expression assay front MDA-MB-231 cells from triple-negative breast cancer (TNBC), which represents the highly aggressive subgroup of breast cancers with poor prognosis. The analyses revealed changes of 27 out of 84 sought target genes. PARP1 and PARP2 were 5.29 and 1.83 times down-regulated after treatment with 3, respectively. PARPs have been attractive antitumor drug targets, considering PARP inhibition could suppress DNA damage repair and sensitize tumor cells to DNA damage agents. Recent advances in DNA repair studies have shown that an approach that causes cell lethality using synthetic PARP-inhibiting drugs has produced promising results in TNBC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-018-0160-0DOI Listing
February 2019

Human topoisomerase inhibition and DNA/BSA binding of Ru(II)-SCAR complexes as potential anticancer candidates for oral application.

Biometals 2017 06 16;30(3):321-334. Epub 2017 Mar 16.

School of Pharmaceutical Sciences, São Paulo State University, Araraquara, 14800-903, Brazil.

Three ruthenium(II) phosphine/diimine/picolinate complexes were selected aimed at investigating anticancer activity against several cancer cell lines and the capacity of inhibiting the supercoiled DNA relaxation mediated by human topoisomerase IB (Top 1). The structure-lipophilicity relationship in membrane permeability using the Caco-2 cells have also been evaluated in this study. SCAR 5 was found to present 45 times more cytotoxicity against breast cancer cell when compared to cisplatin. SCAR 4 and 5 were both found to be capable of inhibiting the supercoiled DNA relaxation mediated by Top 1. Interaction studies showed that SCAR 4 and 5 can bind to DNA through electrostatic interactions while SCAR 6 is able to bind covalently to DNA. The complexes SCAR were found to interact differently with bovine serum albumin (BSA) suggesting hydrophobic interactions with albumin. The permeability of all complexes was seen to be dependent on their lipophilicity. SCAR 4 and 5 exhibited high membrane permeability (P  > 10 × 10 cm·s) in the presence of BSA. The complexes may pass through Caco-2 monolayer via passive diffusion mechanism and our results suggest that lipophilicity and interaction with BSA may influence the complexes permeation. In conclusion, we demonstrated that complexes have powerful pharmacological activity, with different results for each complex depending on the combination of their ligands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-017-0008-zDOI Listing
June 2017

Assessment of the antibacterial, cytotoxic and mutagenic potential of the phenolic-rich hydroalcoholic extract from Copaifera trapezifolia Hayne leaves.

J Med Microbiol 2016 Sep 18;65(9):937-950. Epub 2016 Jul 18.

Laboratory of Research in Applied Microbiology, University of Franca - UNIFRAN, Franca, 14404-600 São Paulo, Brazil.

Copaifera trapezifolia Hayne occurs in the Atlantic Rainforest, which is considered one of the most important and endangered tropical forests on the planet. Although literature works have described many Copaifera spp., their biological activities remain little known. In the present study, we aimed to evaluate (1) the potential of the hydroalcoholic extract from C. trapezifolia leaves (CTE) to act against the causative agents of tooth decay and apical periodontitis and (2) the cytotoxicity and mutagenicity of CTE to ensure that it is safe for subsequent application. Concerning the tested bacteria, the MIC and the minimum bactericidal concentration of CTE varied between 100 and 400 µg ml-1. The time-kill assay conducted at a CTE concentration of 100 µg ml-1 evidenced bactericidal activity against Porphyromonas gingivalis (ATCC 33277) and Peptostreptococcus micros (clinical isolate) within 72 h. CTE at 200 µg ml-1 inhibited Porphyromonas gingivalis and Peptostreptococcus micros biofilm formation by at least 50 %. A combination of CTE with chlorhexidine dichlorohydrate did not prompt any synergistic effects. The colony-forming assay conducted on V79 cells showed that CTE was cytotoxic at concentrations above 156 µg ml-1. CTE exerted mutagenic effect on V79 cells, but the micronucleus test conducted on Swiss mice and the Ames test did not reveal any mutagenicity. Therefore, the use of standardized and safe extracts could be an important strategy to develop novel oral care products with antibacterial action. These extracts could also serve as a source of compounds for the discovery of new promising biomolecules.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000316DOI Listing
September 2016

In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents.

Mutat Res Genet Toxicol Environ Mutagen 2016 Mar 1;798-799:11-8. Epub 2016 Feb 1.

Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Araraquara, São Paulo, Brazil.

Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrgentox.2016.01.007DOI Listing
March 2016

Inhibition of human DNA topoisomerase IB by nonmutagenic ruthenium(II)-based compounds with antitumoral activity.

Metallomics 2016 Feb;8(2):179-92

Departamento de Química, Universidade Federal de São Carlos, CP 676, CEP 13565-905, São Carlos, SP, Brazil.

Herein we synthesized two new ruthenium(II) compounds [Ru(pySH)(bipy)(dppb)]PF6 (1) and [Ru(HSpym)(bipy)(dppb)]PF6 (2) that are analogs to an antitumor agent recently described, [Ru(SpymMe2)(bipy)(dppb)]PF6 (3), where [(Spy) = 2-mercaptopyridine anion; (Spym) = 2-mercaptopyrimidine anion and (SpymMe2) = 4,6-dimethyl-2-mercaptopyrimidine anion]. In vitro cell culture experiments revealed significant anti-proliferative activity for 1-3 against HepG2 and MDA-MB-231 tumor cells, higher than the standard anti-cancer drugs doxorubicin and cisplatin. No mutagenicity is detected when compounds are evaluated by cytokinesis-blocked micronucleus cytome and Ames test in the presence and absence of S9 metabolic activation from rat liver. Interaction studies show that compounds 1-3 can bind to DNA through electrostatic interactions and to albumin through hydrophobic interactions. The three compounds are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (Top1). Compound 3 is the most efficient Top1 inhibitor and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of different steps of Top1 catalytic cycle indicates that 3 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and slows down the religation reaction. Molecular docking shows that 3 preferentially binds closer to the residues of the active site when Top1 is free and lies on the DNA groove downstream of the cleavage site in the Top1-DNA complex. Thus, 3 can be considered in further studies for a possible use as an anticancer agent.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5mt00227cDOI Listing
February 2016

Mutagenicity and chemopreventive activities of Astronium species assessed by Ames test.

Regul Toxicol Pharmacol 2015 Aug 19;72(3):506-13. Epub 2015 May 19.

Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, UNESP-São Paulo State University, CEP 14801-902 Araraquara, São Paulo, Brazil.

In the neotropical savannah, Astronium species are used in popular medicine to treat allergies, inflammation, diarrhea and ulcers. Given that natural products are promising starting points for the discovery of novel potentially therapeutic agents, the aim of the present study was to investigate the mutagenic and antimutagenic activities of hydroalcoholic extracts of Astronium spp. The mutagenicity was determined by the Ames test on Salmonella typhimurium strains TA98, TA97a, TA100 and TA102. The antimutagenicity was tested against the direct-acting and indirect-acting mutagens. The results showed that none of the extracts induce any increase in the number of revertants, demonstrating the absence of mutagenic activity. On the other hand, the results on the antimutagenic potential showed a moderate inhibitory effect against NPD and a strong protective effect against B[a]P and AFB1. This study highlights the importance of screening species of Astronium for new medicinal compounds. The promising results obtained open up new avenues for further study and provide a better understanding the mechanisms by which these species act in protecting DNA from damage. However, further pharmacological and toxicological investigations of crude extracts of Astronium spp., as well as of its secondary metabolites, are necessary to determine the mechanism(s) of action to guarantee their safer and more effective application to human health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2015.05.014DOI Listing
August 2015

Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity.

Molecules 2014 Oct 8;19(10):16039-57. Epub 2014 Oct 8.

Organic Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, Brazil.

Caesalpinia ferrea Martius has traditionally been used in Brazil for many medicinal purposes, such as the treatment of bronchitis, diabetes and wounds. Despite its use as a medicinal plant, there is still no data regarding the genotoxic effect of the stem bark. This present work aims to assess the qualitative and quantitative profiles of the ethanolic extract from the stem bark of C. ferrea and to evaluate its mutagenic activity, using a Salmonella/microsome assay for this species. As a result, a total of twenty compounds were identified by Flow Injection Analysis Electrospray Ionization Ion Trap Mass Spectrometry (FIA-ESI-IT-MS/MSn) in the ethanolic extract from the stem bark of C. ferrea. Hydrolyzable tannins predominated, principally gallic acid derivatives. The HPLC-DAD method was developed for rapid quantification of six gallic acid compounds and ellagic acid derivatives. C. ferrea is widely used in Brazil, and the absence of any mutagenic effect in the Salmonella/microsome assay is important for pharmacological purposes and the safe use of this plant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules191016039DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271747PMC
October 2014

Mutagenicity and antimutagenicity of six Brazilian Byrsonima species assessed by the Ames test.

BMC Complement Altern Med 2014 Jun 5;14:182. Epub 2014 Jun 5.

Department of Biological Sciences, Faculty of Pharmaceutical Sciences of Araraquara, UNESP- São Paulo State University, Rodovia Araraquara-Jaú, km 1, 14801-902 Araraquara, São Paulo, Brazil.

Background: In various regions of Brazil, several species of the genus Byrsonima (Malpighiaceae) are widely used to treat gastrointestinal complications. This genus has about 150 species of shrubs and trees distributed over the entire Neotropical region. Various biological activities have been identified in these plants, especially antioxidant, antimicrobial and topical and systemic anti-inflammatory activities. The aim of this study was to investigate the mutagenicity and antimutagenicity of hydroalcoholic leaf extracts of six species of Byrsonima: B. verbascifolia, B. correifolia, B. coccolobifolia, B. ligustrifolia, B. fagifolia and B. intermedia by the Salmonella microsome assay (Ames test).

Methods: Mutagenic and antimutagenic activity was assessed by the Ames test, with the Salmonella typhimurium tester strains TA100, TA98, TA97a and TA102, with (+S9) and without (-S9) metabolization, by the preincubation method.

Results: Only B. coccolobifolia and B. ligustrifolia showed mutagenic activity. However, the extracts of B. verbascifolia, B. correifolia, B. fagifolia and B. intermedia were found to be strongly antimutagenic against at least one of the mutagens tested.

Conclusions: These results contribute to valuable data on the safe use of medicinal plants and their potential chemopreventive effects. Considering the excellent antimutagenic activities extracted from B. verbascifolia, B. correifolia, B. fagifolia and B. intermedia, these extracts are good candidate sources of chemopreventive agents. However, B. coccolobifolia and B. ligustrifolia showed mutagenic activity, suggesting caution in their use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1472-6882-14-182DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052806PMC
June 2014