Publications by authors named "Rolph Pfundt"

209 Publications

Quadrupedal gait and cerebellar hypoplasia, the Uner Tan syndrome, caused by ITPR1 gene mutation.

Parkinsonism Relat Disord 2021 Oct 14;92:33-35. Epub 2021 Oct 14.

Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2021.10.008DOI Listing
October 2021

MED13L-related intellectual disability due to paternal germinal mosaicism.

Cold Spring Harb Mol Case Stud 2021 Oct 15. Epub 2021 Oct 15.

Inst. of Paediatrics, University of Debrecen

The MED13L-related intellectual disability or MRFACD syndrome (Mental retardation and distinctive facial features with or without cardiac defects; MIM # 616789) is one of the most common form of syndromic intellectual disability with about a hundred cases reported so far. Affected individuals share overlapping features comprising intellectual disability, hypotonia, motor delay, remarkable speech delay, and a recognizable facial gestalt. De novo disruption of the MED13L gene by deletions, duplications or sequence variants has been identified deleterious. Siblings affected by intragenic deletion transmitted from a mosaic parent have been reported once in the literature. We now present the first case of paternal germinal mosaicism for a missense MED13L variant causing MRFACD syndrome in one of the father's children and be the likely cause of intellectual disability and facial dysmorphism in the other. As part of the Mediator complex, the MED proteins have an essential role in regulating transcription. 32 subunits of the Mediator complex genes have been linked to congenital malformations that are now acknowledged as transcriptomopathies. The MRFACD syndrome has been suggested to represent a recognizable phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/mcs.a006124DOI Listing
October 2021

Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders.

Am J Hum Genet 2021 09 9;108(9):1692-1709. Epub 2021 Aug 9.

Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands.

Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.07.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456161PMC
September 2021

Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome.

Genet Med 2021 Aug 3. Epub 2021 Aug 3.

Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.

Purpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort.

Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays.

Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants.

Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01246-2DOI Listing
August 2021

TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila.

Am J Hum Genet 2021 09 26;108(9):1669-1691. Epub 2021 Jul 26.

Phoenix Children's Hospital, Phoenix, AZ 85016, USA; Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA.

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.06.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456166PMC
September 2021

De novo variants in TCF7L2 are associated with a syndromic neurodevelopmental disorder.

Am J Med Genet A 2021 08 18;185(8):2384-2390. Epub 2021 May 18.

Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

TCF7L2 encodes transcription factor 7-like 2 (OMIM 602228), a key mediator of the evolutionary conserved canonical Wnt signaling pathway. Although several large-scale sequencing studies have implicated TCF7L2 in intellectual disability and autism, both the genetic mechanism and clinical phenotype have remained incompletely characterized. We present here a comprehensive genetic and phenotypic description of 11 individuals who have been identified to carry de novo variants in TCF7L2, both truncating and missense. Missense variation is clustered in or near a high mobility group box domain, involving this region in these variants' pathogenicity. All affected individuals present with developmental delays in childhood, but most ultimately achieved normal intelligence or had only mild intellectual disability. Myopia was present in approximately half of the individuals, and some individuals also possessed dysmorphic craniofacial features, orthopedic abnormalities, or neuropsychiatric comorbidities including autism and attention-deficit/hyperactivity disorder (ADHD). We thus present an initial clinical and genotypic spectrum associated with variation in TCF7L2, which will be important in informing both medical management and future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.62254DOI Listing
August 2021

Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype.

Genet Med 2021 08 3;23(8):1474-1483. Epub 2021 May 3.

Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf-Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood.

Methods: We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro.

Results: The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2's folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants.

Conclusion: NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch-Steindl syndrome after the delineators of this phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01158-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354849PMC
August 2021

Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency.

Blood Adv 2021 05;5(9):2339-2349

Academic Center for Hemoglobinopathies and Rare Anemias.

The BCL11A gene encodes a transcriptional repressor with essential functions in multiple tissues during human development. Haploinsufficiency for BCL11A causes Dias-Logan syndrome (OMIM 617101), an intellectual developmental disorder with hereditary persistence of fetal hemoglobin (HPFH). Due to the severe phenotype, disease-causing variants in BCL11A occur de novo. We describe a patient with a de novo heterozygous variant, c.1453G>T, in the BCL11A gene, resulting in truncation of the BCL11A-XL protein (p.Glu485X). The truncated protein lacks the 3 C-terminal DNA-binding zinc fingers and the nuclear localization signal, rendering it inactive. The patient displayed high fetal hemoglobin (HbF) levels (12.1-18.7% of total hemoglobin), in contrast to the parents who had HbF levels of 0.3%. We used cultures of patient-derived erythroid progenitors to determine changes in gene expression and chromatin accessibility. In addition, we investigated DNA methylation of the promoters of the γ-globin genes HBG1 and HBG2. HUDEP1 and HUDEP2 cells were used as models for fetal and adult human erythropoiesis, respectively. Similar to HUDEP1 cells, the patient's cells displayed Assay for Transposase-Accessible Chromatin (ATAC) peaks at the HBG1/2 promoters and significant expression of HBG1/2 genes. In contrast, HBG1/2 promoter methylation and genome-wide gene expression profiling were consistent with normal adult erythropoiesis. We conclude that HPFH is the major erythroid phenotype of constitutive BCL11A haploinsufficiency. Given the essential functions of BCL11A in other hematopoietic lineages and the neuronal system, erythroid-specific targeting of the BCL11A gene has been proposed for reactivation of γ-globin expression in β-hemoglobinopathy patients. Our data strongly support this approach.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/bloodadvances.2020003753DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8114548PMC
May 2021

Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism.

Am J Hum Genet 2021 06 27;108(6):1138-1150. Epub 2021 Apr 27.

Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.

ANKRD17 is an ankyrin repeat-containing protein thought to play a role in cell cycle progression, whose ortholog in Drosophila functions in the Hippo pathway as a co-factor of Yorkie. Here, we delineate a neurodevelopmental disorder caused by de novo heterozygous ANKRD17 variants. The mutational spectrum of this cohort of 34 individuals from 32 families is highly suggestive of haploinsufficiency as the underlying mechanism of disease, with 21 truncating or essential splice site variants, 9 missense variants, 1 in-frame insertion-deletion, and 1 microdeletion (1.16 Mb). Consequently, our data indicate that loss of ANKRD17 is likely the main cause of phenotypes previously associated with large multi-gene chromosomal aberrations of the 4q13.3 region. Protein modeling suggests that most of the missense variants disrupt the stability of the ankyrin repeats through alteration of core structural residues. The major phenotypic characteristic of our cohort is a variable degree of developmental delay/intellectual disability, particularly affecting speech, while additional features include growth failure, feeding difficulties, non-specific MRI abnormalities, epilepsy and/or abnormal EEG, predisposition to recurrent infections (mostly bacterial), ophthalmological abnormalities, gait/balance disturbance, and joint hypermobility. Moreover, many individuals shared similar dysmorphic facial features. Analysis of single-cell RNA-seq data from the developing human telencephalon indicated ANKRD17 expression at multiple stages of neurogenesis, adding further evidence to the assertion that damaging ANKRD17 variants cause a neurodevelopmental disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206162PMC
June 2021

Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature.

Am J Hum Genet 2021 06 27;108(6):1053-1068. Epub 2021 Apr 27.

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.04.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206150PMC
June 2021

Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation.

EMBO Mol Med 2021 05 14;13(5):e13258. Epub 2021 Apr 14.

Section Cell Biology, Center for Molecular Medicine, Institute of Biomembranes, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41 and VPS41 ; VPS41 and VPS41 ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41 enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41 /VPS41 abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/emmm.202013258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103106PMC
May 2021

Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior.

Genet Med 2021 06 3;23(6):1028-1040. Epub 2021 Mar 3.

Division of Medical Genetics, Nemours/A.I. DuPont Hospital for Children, Wilmington, DE, USA.

Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.

Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes.

Results: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes.

Conclusion: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01114-zDOI Listing
June 2021

DLG4-related synaptopathy: a new rare brain disorder.

Genet Med 2021 05 17;23(5):888-899. Epub 2021 Feb 17.

Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Purpose: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.

Methods: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.

Results: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.

Conclusion: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-01075-9DOI Listing
May 2021

SPEN haploinsufficiency causes a neurodevelopmental disorder overlapping proximal 1p36 deletion syndrome with an episignature of X chromosomes in females.

Am J Hum Genet 2021 03 16;108(3):502-516. Epub 2021 Feb 16.

Division of Medical Genetics, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.

Deletion 1p36 (del1p36) syndrome is the most common human disorder resulting from a terminal autosomal deletion. This condition is molecularly and clinically heterogeneous. Deletions involving two non-overlapping regions, known as the distal (telomeric) and proximal (centromeric) critical regions, are sufficient to cause the majority of the recurrent clinical features, although with different facial features and dysmorphisms. SPEN encodes a transcriptional repressor commonly deleted in proximal del1p36 syndrome and is located centromeric to the proximal 1p36 critical region. Here, we used clinical data from 34 individuals with truncating variants in SPEN to define a neurodevelopmental disorder presenting with features that overlap considerably with those of proximal del1p36 syndrome. The clinical profile of this disease includes developmental delay/intellectual disability, autism spectrum disorder, anxiety, aggressive behavior, attention deficit disorder, hypotonia, brain and spine anomalies, congenital heart defects, high/narrow palate, facial dysmorphisms, and obesity/increased BMI, especially in females. SPEN also emerges as a relevant gene for del1p36 syndrome by co-expression analyses. Finally, we show that haploinsufficiency of SPEN is associated with a distinctive DNA methylation episignature of the X chromosome in affected females, providing further evidence of a specific contribution of the protein to the epigenetic control of this chromosome, and a paradigm of an X chromosome-specific episignature that classifies syndromic traits. We conclude that SPEN is required for multiple developmental processes and SPEN haploinsufficiency is a major contributor to a disorder associated with deletions centromeric to the previously established 1p36 critical regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.01.015DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8008487PMC
March 2021

TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development.

Hum Mutat 2021 Apr 1;42(4):445-459. Epub 2021 Mar 1.

Department of Pediatrics, SIU School of Medicine, Springfield, Illinois, USA.

Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24176DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248425PMC
April 2021

Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction.

Am J Hum Genet 2021 02 28;108(2):346-356. Epub 2021 Jan 28.

Department of Rehabilitation and Development, Randall Children's Hospital at Legacy Emanuel Medical Center, Portland, OR 97227, USA.

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.01.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895900PMC
February 2021

Comprehensive study of 28 individuals with SIN3A-related disorder underscoring the associated mild cognitive and distinctive facial phenotype.

Eur J Hum Genet 2021 04 12;29(4):625-636. Epub 2021 Jan 12.

Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.

Witteveen-Kolk syndrome (OMIM 613406) is a recently defined neurodevelopmental syndrome caused by heterozygous loss-of-function variants in SIN3A. We define the clinical and neurodevelopmental phenotypes related to SIN3A-haploinsufficiency in 28 unreported patients. Patients with SIN3A variants adversely affecting protein function have mild intellectual disability, growth and feeding difficulties. Involvement of a multidisciplinary team including a geneticist, paediatrician and neurologist should be considered in managing these patients. Patients described here were identified through a combination of clinical evaluation and gene matching strategies (GeneMatcher and Decipher). All patients consented to participate in this study. Mean age of this cohort was 8.2 years (17 males, 11 females). Out of 16 patients ≥ 8 years old assessed, eight (50%) had mild intellectual disability (ID), four had moderate ID (22%), and one had severe ID (6%). Four (25%) did not have any cognitive impairment. Other neurological symptoms such as seizures (4/28) and hypotonia (12/28) were common. Behaviour problems were reported in a minority. In patients ≥2 years, three were diagnosed with Autism Spectrum Disorder (ASD) and four with Attention Deficit Hyperactivity Disorder (ADHD). We report 27 novel variants and one previously reported variant. 24 were truncating variants; three were missense variants and one large in-frame gain including exons 10-12.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-020-00769-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115148PMC
April 2021

Haploinsufficiency of the HIRA gene located in the 22q11 deletion syndrome region is associated with abnormal neurodevelopment and impaired dendritic outgrowth.

Hum Genet 2021 Jun 8;140(6):885-896. Epub 2021 Jan 8.

Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France.

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-020-02252-1DOI Listing
June 2021

De Novo variants in EEF2 cause a neurodevelopmental disorder with benign external hydrocephalus.

Hum Mol Genet 2021 02;29(24):3892-3899

Department of Human Genetics, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behavior, 6525 GA Nijmegen, The Netherlands.

Eukaryotic translation elongation factor 2 (eEF2) is a key regulatory factor in gene expression that catalyzes the elongation stage of translation. A functionally impaired eEF2, due to a heterozygous missense variant in the EEF2 gene, was previously reported in one family with spinocerebellar ataxia-26 (SCA26), an autosomal dominant adult-onset pure cerebellar ataxia. Clinical exome sequencing identified de novo EEF2 variants in three unrelated children presenting with a neurodevelopmental disorder (NDD). Individuals shared a mild phenotype comprising motor delay and relative macrocephaly associated with ventriculomegaly. Populational data and bioinformatic analysis underscored the pathogenicity of all de novo missense variants. The eEF2 yeast model strains demonstrated that patient-derived variants affect cellular growth, sensitivity to translation inhibitors and translational fidelity. Consequently, we propose that pathogenic variants in the EEF2 gene, so far exclusively associated with late-onset SCA26, can cause a broader spectrum of neurologic disorders, including childhood-onset NDDs and benign external hydrocephalus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddaa270DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7907856PMC
February 2021

Germline AGO2 mutations impair RNA interference and human neurological development.

Nat Commun 2020 11 16;11(1):5797. Epub 2020 Nov 16.

Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-19572-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670403PMC
November 2020

A de novo Novel Splice Variant in an Adult Female with Severe Intellectual Disability.

Int Med Case Rep J 2020 7;13:487-492. Epub 2020 Oct 7.

Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.

The catenin beta-1 () gene, encoding a sub-unit of the cadherin/catenin protein complex that is involved in the Wnt signalling pathway important for proper interneuron development, is considered to be causative for the rare autosomal dominant mental retardation syndrome, formerly called MRD19 but later renamed neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV). Its main characteristics are moderate to severe intellectual disability (ID), disruptive autistic behaviours, microcephaly, absent or limited speech, facial dysmorphisms, peripheral hypertonia/spasticity, motor delay and visual defects. So far, 35 patients have been reported with a de novo loss-of-function variant in . In two other patients, a deletion comprising the full gene was found. Four out of the 37 patients were of adult age (range: 27-51 years), while the majority was infant or adolescent (range: 0-20 years). Here, a 32-year-old severely intellectually disabled female patient is described in whom exome sequencing disclosed a de novo heterozygous splice site variant in the gene [Chr3(GRCh37): g.41267064G>T; NM_001904.3: 23. c.734+1G>T; r. spl?]. Somatic investigation disclosed significant microcephaly and minor facial dysmorphisms. Neurological examination demonstrated severe kyphoscoliosis, distal spastic tetraparesis, especially of the legs with increased tendon reflexes and bilateral Babinski sign, resulting in severely impaired walking capability with a broad-based gait. Apart from strabismus, no ophthalmological abnormalities were found. Here, the reported variant in the gene was not published earlier nor is included in the international databases. This specific variant is considered to be causative for the severe ID, autism and the somato-neurological phenotype of the patient and corresponds with a diagnosis of NEDSDV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/IMCRJ.S270487DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7548236PMC
October 2020

Evidence for 28 genetic disorders discovered by combining healthcare and research data.

Nature 2020 10 14;586(7831):757-762. Epub 2020 Oct 14.

Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.

De novo mutations in protein-coding genes are a well-established cause of developmental disorders. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2832-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116826PMC
October 2020

De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects.

Am J Hum Genet 2020 08 31;107(2):311-324. Epub 2020 Jul 31.

Bezmiâlem Vakıf Üniversitesi, Istanbul, 34093, Turkey.

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.06.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7413890PMC
August 2020

The expanding clinical phenotype of germline ABL1-associated congenital heart defects and skeletal malformations syndrome.

Hum Mutat 2020 Oct 19;41(10):1738-1744. Epub 2020 Jul 19.

Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas.

Congenital heart defects and skeletal malformations syndrome (CHDSKM) is a rare autosomal dominant disorder characterized by congenital heart disease, skeletal abnormalities, and failure to thrive. CHDSKM is caused by germline mutations in ABL1. To date, three variants have been in association with CHDSKM. In this study, we describe three de novo missense variants, c.407C>T (p.Thr136Met), c.746C>T (p.Pro249Leu), and c.1573G>A (p.Val525Met), and one recurrent variant, c.1066G>A (p.Ala356Thr), in six patients, thereby expanding the phenotypic spectrum of CHDSKM to include hearing impairment, lipodystrophy-like features, renal hypoplasia, and distinct ocular abnormalities. Functional investigation of the three novel variants showed an increased ABL1 kinase activity. The cardiac findings in additional patients with p.Ala356Thr contribute to the accumulating evidence that patients carrying either one of the recurrent variants, p.Tyr245Cys and p.Ala356Thr, have a high incidence of cardiac abnormalities. The phenotypic expansion has implications for the clinical diagnosis of CHDSKM in patients with germline ABL1 variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24075DOI Listing
October 2020

Constraint and conservation of paired-type homeodomains predicts the clinical outcome of missense variants of uncertain significance.

Hum Mutat 2020 08 2;41(8):1407-1424. Epub 2020 Jun 2.

Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.

The need to interpret the pathogenicity of novel missense variants of unknown significance identified in the homeodomain of X-chromosome aristaless-related homeobox (ARX) gene prompted us to assess the utility of conservation and constraint across these domains in multiple genes compared to conventional in vitro functional analysis. Pathogenic missense variants clustered in the homeodomain of ARX contribute to intellectual disability (ID) and epilepsy, with and without brain malformation in affected males. Here we report novel c.1112G>A, p.Arg371Gln and c.1150C>T, p.Arg384Cys variants in male patients with ID and severe seizures. The third case of a male patient with a c.1109C>T, p.Ala370Val variant is perhaps the first example of ID and autism spectrum disorder (ASD), without seizures or brain malformation. We compiled data sets of pathogenic variants from ClinVar and presumed benign variation from gnomAD and demonstrated that the high levels of sequence conservation and constraint of benign variation within the homeodomain impacts upon the ability of publicly available in silico prediction tools to accurately discern likely benign from likely pathogenic variants in these data sets. Despite this, considering the inheritance patterns of the genes and disease variants with the conservation and constraint of disease variants affecting the homeodomain in conjunction with current clinical assessments may assist in predicting the pathogenicity of missense variants, particularly for genes with autosomal recessive and X-linked patterns of disease inheritance, such as ARX. In vitro functional analysis demonstrates that the transcriptional activity of all three variants was diminished compared to ARX-Wt. We review the associated phenotypes of the published cases of patients with ARX homeodomain variants and propose expansion of the ARX-related phenotype to include severe ID and ASD without brain malformations or seizures. We propose that the use of the constraint and conservation data in conjunction with consideration of the patient phenotype and inheritance pattern may negate the need for the experimental functional validation currently required to achieve a diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.24034DOI Listing
August 2020

Characterization of SETD1A haploinsufficiency in humans and Drosophila defines a novel neurodevelopmental syndrome.

Mol Psychiatry 2021 06 28;26(6):2013-2024. Epub 2020 Apr 28.

Center for Pediatric Genomic Medicine, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.

Defects in histone methyltransferases (HMTs) are major contributing factors in neurodevelopmental disorders (NDDs). Heterozygous variants of SETD1A involved in histone H3 lysine 4 (H3K4) methylation were previously identified in individuals with schizophrenia. Here, we define the clinical features of the Mendelian syndrome associated with haploinsufficiency of SETD1A by investigating 15 predominantly pediatric individuals who all have de novo SETD1A variants. These individuals present with a core set of symptoms comprising global developmental delay and/or intellectual disability, subtle facial dysmorphisms, behavioral and psychiatric problems. We examined cellular phenotypes in three patient-derived lymphoblastoid cell lines with three variants: p.Gly535Alafs*12, c.4582-2_4582delAG, and p.Tyr1499Asp. These patient cell lines displayed DNA damage repair defects that were comparable to previously observed RNAi-mediated depletion of SETD1A. This suggested that these variants, including the p.Tyr1499Asp in the catalytic SET domain, behave as loss-of-function (LoF) alleles. Previous studies demonstrated a role for SETD1A in cell cycle control and differentiation. However, individuals with SETD1A variants do not show major structural brain defects or severe microcephaly, suggesting that defective proliferation and differentiation of neural progenitors is unlikely the single underlying cause of the disorder. We show here that the Drosophila melanogaster SETD1A orthologue is required in postmitotic neurons of the fly brain for normal memory, suggesting a role in post development neuronal function. Together, this study defines a neurodevelopmental disorder caused by dominant de novo LoF variants in SETD1A and further supports a role for H3K4 methyltransferases in the regulation of neuronal processes underlying normal cognitive functioning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0725-5DOI Listing
June 2021

Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging.

Prenat Diagn 2020 07 5;40(8):972-983. Epub 2020 May 5.

Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.

Objective: The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging.

Methods: In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7).

Results: A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases.

Conclusions: These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.5717DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497059PMC
July 2020

Pathogenic variants in cause a genetic disorder characterised by developmental delay/intellectual disability and a spectrum of neurobehavioural phenotypes including autism and ADHD.

J Med Genet 2020 10 9;57(10):717-724. Epub 2020 Mar 9.

GeneDx, Gaithersburg, Maryland, USA.

Background: Rare variants in hundreds of genes have been implicated in developmental delay (DD), intellectual disability (ID) and neurobehavioural phenotypes. encodes a protein important for RNA silencing. Heterozygous truncating variants have been reported in three patients from large cohorts with autism, but no full phenotypic characterisation was described.

Methods: Clinical and molecular characterisation was performed on 17 patients with variants. Clinical data were obtained by retrospective chart review, parent interviews, direct patient interaction with providers and formal neuropsychological evaluation.

Results: Clinical findings included DD/ID (17/17) (speech delay in 94% (16/17), fine motor delay in 82% (14/17) and gross motor delay in 71% (12/17) of subjects), autism or autistic traits (13/17), attention deficit and hyperactivity disorder (ADHD) (11/17), other behavioural problems (7/17) and musculoskeletal findings (12/17). Other congenital malformations or clinical findings were occasionally documented. The majority of patients exhibited some dysmorphic features but no recognisable gestalt was identified. 17 heterozygous variants were identified in 12 male and five female unrelated subjects by exome sequencing (14), a targeted panel (2) and a chromosomal microarray (1). The variants were nonsense (7), frameshift (5), splice site (2), intragenic deletions (2) and missense (1).

Conclusions: Variants in cause a novel genetic disorder characterised by recurrent neurocognitive and behavioural phenotypes featuring DD/ID, autism, ADHD and other behavioural abnormalities. Our data highly suggest that haploinsufficiency is the most likely pathogenic mechanism. should be added to the growing list of genes of the RNA-induced silencing complex associated with ID/DD, autism and ADHD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2019-106470DOI Listing
October 2020

De Novo Variants in SPOP Cause Two Clinically Distinct Neurodevelopmental Disorders.

Am J Hum Genet 2020 03 27;106(3):405-411. Epub 2020 Feb 27.

Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands. Electronic address:

Recurrent somatic variants in SPOP are cancer specific; endometrial and prostate cancers result from gain-of-function and dominant-negative effects toward BET proteins, respectively. By using clinical exome sequencing, we identified six de novo pathogenic missense variants in SPOP in seven individuals with developmental delay and/or intellectual disability, facial dysmorphisms, and congenital anomalies. Two individuals shared craniofacial dysmorphisms, including congenital microcephaly, that were strikingly different from those of the other five individuals, who had (relative) macrocephaly and hypertelorism. We measured the effect of SPOP variants on BET protein amounts in human Ishikawa endometrial cancer cells and patient-derived cell lines because we hypothesized that variants would lead to functional divergent effects on BET proteins. The de novo variants c.362G>A (p.Arg121Gln) and c. 430G>A (p.Asp144Asn), identified in the first two individuals, resulted in a gain of function, and conversely, the c.73A>G (p.Thr25Ala), c.248A>G (p.Tyr83Cys), c.395G>T (p.Gly132Val), and c.412C>T (p.Arg138Cys) variants resulted in a dominant-negative effect. Our findings suggest that these opposite functional effects caused by the variants in SPOP result in two distinct and clinically recognizable syndromic forms of intellectual disability with contrasting craniofacial dysmorphisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2020.02.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058825PMC
March 2020

Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy.

Nat Commun 2020 01 30;11(1):595. Epub 2020 Jan 30.

Department of Pediatrics, Department of Neurology, & the Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-14360-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6992768PMC
January 2020
-->