Publications by authors named "Roberto Arban"

35 Publications

Effects of pro-depressant and immunomodulatory drugs on biases in decision-making in the rat judgement bias task.

Eur J Neurosci 2021 Jan 27. Epub 2021 Jan 27.

Faculty of Biomedical Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.

Studies in human and non-human species suggest that decision-making behaviour can be biased by an affective state, also termed an affective bias. To study these behaviours in non-human species, judgement bias tasks (JBT) have been developed. Animals are trained to associate specific cues (tones) with a positive or negative/less positive outcome. Animals are then presented with intermediate ambiguous cues and affective biases quantified by observing whether animals make more optimistic or more pessimistic choices. Here we use a high versus low reward JBT and test whether pharmacologically distinct compounds, which induce negative biases in learning and memory, have similar effects on decision-making: tetrabenazine (0.0-1.0 mg/kg), retinoic acid (0.0-10.0 mg/kg), and rimonabant (0.0-10.0 mg/kg). We also tested immunomodulatory compounds: interferon-α (0-100 units/kg), lipopolysaccharide (0.0-10.0 μg/kg), and corticosterone (0.0-10.0 mg/kg). We observed no specific effects in the JBT with any acute treatment except corticosterone which induced a negative bias. We have previously observed a similar lack of effect with acute but not chronic psychosocial stress and so next tested decision-making behaviour following chronic interferon-alpha. Animals developed a negative bias which was sustained even after treatment was ended. These data suggest that decision-making behaviour in the task is sensitive to chronic but not acute effects of most pro-depressant drugs or immunomodulators, but the exogenous administration of acute corticosterone induces pessimistic behaviour. This work supports our hypothesis that biases in decision-making develop over a different temporal scale to those seen with learning and memory which may be relevant in the development and perpetuation of mood disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.15127DOI Listing
January 2021

Whole-brain signatures of functional connectivity after bidirectional modulation of the dopaminergic system in mice.

Neuropharmacology 2020 11 6;178:108246. Epub 2020 Aug 6.

Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach Riß, Germany. Electronic address:

While neuropsychiatric drugs influence neural activity across multiple brain regions, the current understanding of their mechanism of action derives from studies that investigate an influence of a given drug onto a pre-selected and small number of brain regions. To understand how neuropsychiatric drugs affect coordinated activity across brain regions and to detect the brain regions most relevant to pharmacological action in an unbiased way, studies that assess brain-wide neuronal activity are paramount. Here, we used whole-brain immunostaining of the neuronal activity marker cFOS, and graph theory to generate brain-wide maps of neuronal activity upon pharmacological challenges. We generated brain-wide maps 2.5 h after treatment of the atypical dopamine transporter inhibitor modafinil (10, 30, and 100 mg/kg) or the vesicular monoamine transporter 2 inhibitor tetrabenazine (0.25, 0.5 and 1 mg/kg). Modafinil increased the number of cFOS positive neurons in a dose-dependent manner. Moreover, modafinil significantly reduced functional connectivity across the entire brain. Graph theory analysis revealed that modafinil decreased the node degree of cortical and subcortical regions at the three doses tested, followed by a reduction in global efficiency. Simultaneously, we identified highly interconnected hub regions that emerge exclusively upon modafinil treatment. These regions were the mediodorsal thalamus, periaqueductal gray, subiculum, and rhomboid nucleus. On the other hand, while tetrabenazine had mild effects on cFOS counts, it reduced functional connectivity across the entire brain, cortical node degree, and global efficiency. As hub regions, we identified the substantia innominata and ventral pallidum. Our results uncovered novel mechanisms of action at a brain-wide scale for modafinil and tetrabenazine. Our analytical approach offers a tool to characterize signatures of whole-brain functional connectivity for drug candidates and to identify potential undesired effects at a mesoscopic scale. Additionally, it offers a guide towards targeted experiments on newly identified hub regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2020.108246DOI Listing
November 2020

Preclinical validation of the micropipette-guided drug administration (MDA) method in the maternal immune activation model of neurodevelopmental disorders.

Brain Behav Immun 2020 08 9;88:461-470. Epub 2020 Apr 9.

Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland. Electronic address:

Pharmacological treatments in laboratory rodents remain a cornerstone of preclinical psychopharmacological research and drug development. There are numerous ways in which acute or chronic pharmacological treatments can be implemented, with each method having certain advantages and drawbacks. Here, we describe and validate a novel treatment method in mice, which we refer to as the micropipette-guided drug administration (MDA) procedure. This administration method is based on a sweetened condensed milk solution as a vehicle for pharmacological substances, which motivates the animals to consume vehicle and/or drug solutions voluntarily in the presence of the experimenter. In a proof-of-concept study, we show that the pharmacokinetic profiles of the atypical antipsychotic drug, risperidone, were similar whether administered via the MDA procedure or via the conventional oral gavage method. Unlike the latter, however, MDA did not induce the stress hormone, corticosterone. Furthermore, we assessed the suitability and validity of the MDA method in a mouse model of maternal immune activation, which is frequently used as a model of immune-mediated neurodevelopmental disorders. Using this model, we found that chronic treatment (>4 weeks, once per day) with risperidone via MDA led to a dose-dependent mitigation of MIA-induced social interaction deficits and amphetamine hypersensitivity. Taken together, the MDA procedure described herein represents a novel pharmacological administration method for per os treatments in mice that is easy to implement, cost effective, non-invasive, and less stressful for the animals than conventional oral gavage methods.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2020.04.015DOI Listing
August 2020

Antimanic Efficacy of a Novel Kv3 Potassium Channel Modulator.

Neuropsychopharmacology 2018 Jan 31;43(2):435-444. Epub 2017 Aug 31.

Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.

Kv3.1 and Kv3.2 voltage-gated potassium channels are expressed on parvalbumin-positive GABAergic interneurons in corticolimbic brain regions and contribute to high-frequency neural firing. The channels are also expressed on GABAergic neurons of the basal ganglia, substantia nigra, and ventral tegmental area (VTA) where they regulate firing patterns critical for movement control, reward, and motivation. Modulation of Kv3.1 and Kv3.2 channels may therefore have potential in the treatment of disorders in which these systems have been implicated, such as bipolar disorder. Following the recent development of a potassium channel modulator, AUT1-an imidazolidinedione compound that specifically increases currents mediated by Kv3.1 and Kv3.2 channels in recombinant systems-we report that the compound is able to reverse 'manic-like' behavior in two mouse models: amphetamine-induced hyperactivity and ClockΔ19 mutants. AUT1 completely prevented amphetamine-induced hyperactivity in a dose-dependent manner, similar to the atypical antipsychotic, clozapine. Similar efficacy was observed in Kv3.2 knockout mice. In contrast, AUT1 was unable to prevent amphetamine-induced hyperactivity in mice lacking Kv3.1 channels. Notably, Kv3.1-null mice displayed baseline hyperlocomotion, reduced anxiety-like behavior, and antidepressant-like behavior. In ClockΔ19 mice, AUT1 reversed hyperactivity. Furthermore, AUT1 application modulated firing frequency and action potential properties of ClockΔ19 VTA dopamine neurons potentially through network effects. Kv3.1 protein levels in the VTA of ClockΔ19 and WT mice were unaltered by acute AUT1 treatment. Taken together, these results suggest that the modulation of Kv3.1 channels may provide a novel approach to the treatment of bipolar mania.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/npp.2017.155DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729564PMC
January 2018

GSK356278, a potent, selective, brain-penetrant phosphodiesterase 4 inhibitor that demonstrates anxiolytic and cognition-enhancing effects without inducing side effects in preclinical species.

J Pharmacol Exp Ther 2014 Jul 30;350(1):153-63. Epub 2014 Apr 30.

GlaxoSmithKline, Discovery Medicine, Stevenage, Herts, United Kingdom (F.A.G., P.B.W.); GlaxoSmithKline, Neural Pathways Discovery Performance Unit, Biopolis, Singapore (A.R.R., C.H.D.); GlaxoSmithKline, Neurosciences Centre of Excellence for Drug Discovery, Verona, Italy (A.P., P.C., M.N., E.V., D.M., R.A.); GlaxoSmithKline, Molecular Discovery Research, Collegeville, Pennsylvania (J.S.); and GlaxoSmithKline, Respiratory Centre of Excellence for Drug Discovery, King of Prussia, Pennsylvania (T.G.D.).

Small molecule phosphodiesterase (PDE) 4 inhibitors have long been known to show therapeutic benefit in various preclinical models of psychiatric and neurologic diseases because of their ability to elevate cAMP in various cell types of the central nervous system. Despite the registration of the first PDE4 inhibitor, roflumilast, for the treatment of chronic obstructive pulmonary disease, the therapeutic potential of PDE4 inhibitors in neurologic diseases has never been fulfilled in the clinic due to severe dose-limiting side effects such as nausea and vomiting. In this study, we describe the detailed pharmacological characterization of GSK356278 [5-(5-((2,4-dimethylthiazol-5-yl)methyl)-1,3,4-oxadiazol-2-yl)-1-ethyl-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine], a potent, selective, and brain-penetrant PDE4 inhibitor that shows a superior therapeutic index to both rolipram and roflumilast in various preclinical species and has potential for further development in the clinic for the treatment of psychiatric and neurologic diseases. GSK356278 inhibited PDE4B enzyme activity with a pIC50 of 8.8 and bound to the high-affinity rolipram binding site with a pIC50 of 8.6. In preclinical models, the therapeutic index as defined in a rodent lung inflammation model versus rat pica feeding was >150 compared with 0.5 and 6.4 for rolipram and roflumilast, respectively. In a model of anxiety in common marmosets, the therapeutic index for GSK356278 was >10 versus <1 for rolipram. We also demonstrate that GSK356278 enhances performance in a model of executive function in cynomolgus macaques with no adverse effects, a therapeutic profile that supports further evaluation of GSK356278 in a clinical setting.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.114.214155DOI Listing
July 2014

Distinct receptor subtypes mediate arginine vasopressin-dependent ACTH release and intracellular calcium mobilization in rat pituitary cells.

Eur J Pharmacol 2012 Mar 20;679(1-3):16-23. Epub 2012 Jan 20.

Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, 37135 Verona, Italy.

In the present study, adrenocorticotropic hormone (ACTH) release and intracellular calcium ([Ca(2+)](i)) increase induced by arginine vasopressin (AVP) were characterized in collagenase-dispersed and 3-day cultured rat anterior pituitary cells. AVP and the selective vasopressin V(1b) receptor agonist, [1-deamino-4-cyclohexylalanine]AVP (d[Cha(4)]AVP) induced ACTH release with nanomolar potencies in both cell preparations, and produced a maximal stimulation that was about 1.5 fold greater in the 3-day cultured cells, indicating that the vasopressin V(1b) receptor-ACTH release pathway is enhanced over time in culture. In dispersed cells, AVP, oxytocin and d[Cha(4)]AVP induced [Ca(2+)](i) increases with nanomolar potencies. The selective vasopressin V(1a) receptors antagonist, SR49059 (100 nM), together with the selective oxytocin receptors antagonist (d(CH(2))(5)(1)Tyr(Me)(2),Thr(4),Orn(8),Tyr-NH(2)(9)-vasotocin (100 nM), inhibited the maximal AVP response by ~70%, without affecting the response to d[Cha(4)]AVP, suggesting that the V(1b) receptor was only partially responsible for the AVP-induced [Ca(2+)](i) increase. In contrast, in 3-day cultures, AVP induced an increase in [Ca(2+)](i), while oxytocin and d[Cha(4)]AVP did not. The response to AVP was completely antagonized by SR49059, whereas the vasopressin V(1b) receptor antagonists, SSR149415 and (d(CH(2))(5)(1)Tyr(Me)(2),Thr(4),Orn(8),Tyr-NH(2)(9))-vasotocin had no effect, indicating that the [Ca(2+)](i) increase was mediated exclusively by vasopressin V(1a) receptors. In conclusion, the enhancement of vasopressin V(1b) receptor-mediated ACTH release and the lack of a detectable vasopressin V(1b) receptor coupling to [Ca(2+)](i) increase in cultured cells suggests the activation of a different/additional signaling pathway in the molecular mechanism of ACTH release.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2012.01.003DOI Listing
March 2012

Effect of the p38 MAPK inhibitor SB-239063 on Lipopolysaccharide-induced psychomotor retardation and peripheral biomarker alterations in rats.

Eur J Pharmacol 2011 Jul 27;661(1-3):49-56. Epub 2011 Apr 27.

Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline S.p.A., Medicines Research Centre, Verona, Italy.

Lipopolysaccharide (LPS) administration in rats induces a characteristic syndrome termed 'sickness behavior', including profound changes on locomotor activity and circulating stress and inflammatory mediators. The aim of the present investigation was to evaluate whether the behavioral and the peripheral biomarker responses induced by LPS could be modified by acute treatment with the p38 mitogen-activated protein kinase inhibitor SB-239063. Male Sprague-Dawley rats were treated orally either with vehicle or SB-239063 (3, 10 and 30 mg/kg) 1h before an intraperitoneal injection of either saline or LPS 125 μg/kg. Two hours after LPS injection, rats were placed in a novel open field arena for locomotion assessment during both the light and dark periods. Inflammation and stress mediators were evaluated in plasma 2, 3, 5 or 14 h into the dark phase. Pre-treatment with SB-239063 significantly reversed the locomotor deficits induced by LPS injection. Interleukin (IL)-1β, IL-6, IL-10, Granulocyte-Macrophage-Colony Stimulating Factor, Interferon-γ, and C-reactive-protein levels were increased significantly by LPS, but not when LPS was preceded by SB-239063 treatment. LPS significantly decreased growth-hormone and Prolactin, and this effect was attenuated by SB-239063. Tumor Necrosis Factor-α, Adrenocorticotropic Hormone and Corticosterone levels were significantly higher in LPS-treated rats and were not normalized by SB-239063. Thus, we demonstrate that acute treatment with SB-239063 may have ameliorating effects in early changes of LPS-induced sickness behavior and alteration in the peripheral cytokines/hormones. As such, our procedure may offer an opportunity to test the activity of novel anti-inflammatory compounds on specific symptoms of sickness associated with neuroimmune dysfunctions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2011.04.020DOI Listing
July 2011

The characterization of a novel V1b antagonist lead series.

Bioorg Med Chem Lett 2011 Jan 19;21(1):92-6. Epub 2010 Nov 19.

GlaxoSmithKline Research and Development, New Frontiers Science Park, Harlow, UK.

The SAR around a V1b antagonist HTS hit 3 was explored to produce a series of thiazole sulfonamides as a lead series with selectivity over the related V1 and oxytocin receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.11.061DOI Listing
January 2011

5-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}-2(1H)-quinolinones and 3,4-dihydro-2(1H)-quinolinones: dual-acting 5-HT1 receptor antagonists and serotonin reuptake inhibitors. Part 3.

Bioorg Med Chem Lett 2010 Dec 27;20(23):7092-6. Epub 2010 Sep 27.

Neurosciences CEDD, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, UK.

5-{2-[4-(2-Methyl-5-quinolinyl)-1-piperazinyl]ethyl}-2(1H)-quinolinones and 3,4-dihydro-2(1H)-quinolinones have been identified with different combinations of 5-HT(1) autoreceptor antagonist and hSerT potencies and excellent rat PK profiles. The availability of tool compounds with a range of profiles at targets known to play a key role in the control of synaptic 5-HT levels will allow exploration of different pharmacological profiles in a range of animal behavioral and disease models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.09.085DOI Listing
December 2010

Strain-specific outcomes of repeated social defeat and chronic fluoxetine treatment in the mouse.

Pharmacol Biochem Behav 2011 Jan 21;97(3):566-76. Epub 2010 Sep 21.

Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, via Fleming 4, 37135 Verona, Italy.

Social stress is a risk factor for affective disorders in vulnerable individuals. Although the biological nature of stress susceptibility/resilience remains to be elucidated, genetic variation is considered amongst the principal contributors to brain disorders. Furthermore, genetic predisposition may be determinant for the therapeutic outcome, as proposed for antidepressant treatments. In the present studies we compared the inherently diverse genetic backgrounds of 2 mouse strains by assessing the efficacy of a chronic antidepressant treatment in a repeated social stress procedure. C57BL/6J and BalbC mice underwent 10-day social defeats followed by 28-day fluoxetine treatment (10 mg/kg/mL, p.o.). In C57BL/6J, most of the social defeat-induced changes were of metabolic nature including persistently altered feed efficiency and decreased abdominal fat stores that were ameliorated by fluoxetine. BalbC mouse behavior was persistently affected by social defeat both in the social avoidance and the forced swim tests, and in either procedure it was restored by chronic fluoxetine, whereas their endocrine parameters were mostly unaffected. The highlighted strain-specific responsivity to the metabolic and behavioral consequences of social defeat and to the chronic antidepressant treatment offers a promising research tool to further explore the underlying neural mechanisms and genetic basis of stress susceptibility and treatment response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2010.09.010DOI Listing
January 2011

Pyrrolo[1,2-a]pyrazine and pyrazolo[1,5-a]pyrazine: novel, potent, and selective series of Vasopressin 1b receptor antagonists.

Bioorg Med Chem Lett 2010 Sep 14;20(17):5044-9. Epub 2010 Jul 14.

Department of Translational Biology, GlaxoSmithKline, Neuroscience Centre of Excellence for Drug Discovery, Verona, Italy.

Novel series of pyrrole-pyrazinone and pyrazole-pyrazinone have been identified as potent and selective Vasopressin(1b) receptor antagonists. Exploration of the substitution pattern around the core of these templates allowed generation of compounds with high inhibitory potency at the Vasopressin(1b) receptor, including examples that showed good selectivity with respect to Vasopressin(1a), Vasopressin(2), and Oxytocin receptor subtypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.07.037DOI Listing
September 2010

Different susceptibility to social defeat stress of BalbC and C57BL6/J mice.

Behav Brain Res 2011 Jan 21;216(1):100-8. Epub 2010 Jul 21.

Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, via Alessandro Fleming 4, 37135 Verona, Italy.

Social stress may precipitate psychopathological disorders in susceptible individuals. The present experiments were focused on the biology beyond the differential susceptibility to social stress. Social defeat, an ethologically relevant stressor known to elicit different coping strategies, was used in two mouse strains differing for baseline emotionality, such as C57BL6/J and BalbC. In separate experiments, in both strains a single social defeat decreased home-cage activity without altering social aversion; it diminished body weight only in defeated BalbC mice. In longitudinal experiments, mice experienced repeated social defeats that induced multiple long-term consequences. Defeated C57BL6/J increased their body weight and food intake; defeated BalbC mice diminished their metabolic efficiency. Only defeated BalbC subjects exhibited increased social avoidance levels; no differences from controls were seen on forced swim test response in defeated mice of either strain. No long-term effects of social defeat were detected in peripheral biomarkers of stress, metabolic, and immune responses, although the analysis of selected internal organs revealed decreases in abdominal fat and gonadal organs in all defeated subjects. These results demonstrated a strain-distinctive profile in the susceptibility to social defeat stress, either acutely or chronically, with metabolic consequences more consistently found in C57BL6/J while social aversion induced predominantly in BalbC subjects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2010.07.014DOI Listing
January 2011

Design and synthesis of novel tricyclic benzoxazines as potent 5-HT(1A/B/D) receptor antagonists leading to the discovery of 6-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}-4H-imidazo[5,1-c][1,4]benzoxazine-3-carboxamide (GSK588045).

J Med Chem 2010 Aug;53(15):5827-43

Neurosciences CEDD, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, UK.

Bioisoteric replacement of the metabolically labile N-methyl amide group of a series of benzoxazinones with small heterocyclic rings has led to novel series of fused tricyclic benzoxazines which are potent 5-HT(1A/B/D) receptor antagonists with and without concomitant human serotonin transporter (hSerT) activity. Optimizing against multiple parameters in parallel identified 6-{2-[4-(2-methyl-5-quinolinyl)-1-piperazinyl]ethyl}-4H-imidazo[5,1-c][1,4]benzoxazine-3-carboxamide (GSK588045) as a potent 5-HT(1A/B/D) receptor antagonist with a high degree of selectivity over human ether-a-go-go related gene (hERG) potassium channels, favorable pharmacokinetics, and excellent activity in vivo in rodent pharmacodynamic (PD) models. On the basis of its outstanding overall profile, this compound was progressed as a clinical candidate with the ultimate aim to assess its potential as a faster acting antidepressant/anxiolytic with reduced side-effect burden.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm100482nDOI Listing
August 2010

6-(3,4-dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo[4.1.0]heptane: a new potent and selective triple reuptake inhibitor.

J Med Chem 2010 Jul;53(13):4989-5001

Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Via Fleming 4, 37135 Verona, Italy.

A pharmacophore model for triple reuptake inhibitors and the new class of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes were recently reported. Further investigation in this area led to the identification of a new series of potent and selective triple reuptake inhibitors endowed with good developability characteristics. Excellent bioavailability and brain penetration are associated with this series of 6-(3,4-dichlorophenyl)-1-[(methyloxy)methyl]-3-azabicyclo[4.1.0]heptanes together with high in vitro potency and selectivity at SERT, NET, and DAT. In vivo microdialysis experiments in different animal models and receptor occupancy studies in rat confirmed that derivative 17 showed an appropriate profile to guarantee further progression of the compound.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm100481dDOI Listing
July 2010

1-(Aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes: a new series of potent and selective triple reuptake inhibitors.

J Med Chem 2010 Mar;53(6):2534-51

Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicine Research Centre, Via Fleming 4, 37135 Verona, Italy.

The discovery of new highly potent and selective triple reuptake inhibitors is reported. The new classes of 1-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes are described together with detailed SAR. Appropriate decoration of the scaffolds was achieved with the help of a triple reuptake inhibitor pharmacophore model detailed here. Selected derivatives showed good oral bioavailability (>30%) and brain penetration (B/B > 4) in rats associated with high in vitro potency and selectivity at SERT, NET, and DAT. Among these compounds, microdialysis and in vivo experiments confirm that derivative 15 has an appropriate developability profile to be considered for further progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm901818uDOI Listing
March 2010

Alterations of behavioral and endocrinological reactivity induced by 3 brief social defeats in rats: relevance to human psychopathology.

Psychoneuroendocrinology 2009 Oct 30;34(9):1405-16. Epub 2009 May 30.

Neurosciences CEDD, GlaxoSmithKline Medicine Research Centre, 37135 Verona, Italy.

In the realm of animal models of psychopathology, social stress based procedures rely on robust theoretical prerequisites to meet construct validity criteria for the target syndromes. In order to further assess the relevance for human psychopathology of a social defeat based model in rats, known to elicit consistent behavioral and hormonal changes, we expanded its characterization on the basis of both behavioral parameters and peripheral biomarkers thought to be pertinent for clinical symptoms. Rats were subjected to 3 daily social defeat experiences that shortly thereafter led to the insurgence of defensive behaviors, anhedonia, and body weight loss. HPA axis showed an activated response when rats were sampled as early as after the first social defeat experience, while none of the peripheral immune, metabolic, and neurotrophic factors examined were concurrently affected. With the aim of determining the long-term bio-behavioral sequelae of the social defeat experience, rats were assessed also 3 weeks after the social defeats. At this time, behavioral changes were still observed, including decreased general activity and sociality in a social avoidance test, increased immobility and decreased escape responses in a forced swim test. These alterations were not paralleled by alterations in anhedonia nor HPA axis responses from controls, nor where evident changes in the humoral component of the immune response nor in brain derived neurotrophic factor levels, whereas a substantial increase in leptin levels was observed in previously socially defeated rats compared to control. Overall these data depict a very complex set of alterations induced both acutely and long-term by social stress in endocrinological and behavioral reactivity of rats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.psyneuen.2009.04.018DOI Listing
October 2009

Transient forebrain over-expression of CRF induces plasma corticosterone and mild behavioural changes in adult conditional CRF transgenic mice.

Pharmacol Biochem Behav 2009 Jul 7;93(1):17-24. Epub 2009 Apr 7.

Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline S.p.A. Medicines Research Centre, Via Fleming 4, 37135 Verona, Italy.

Background: Converging findings support a role for extra-hypothalamic CRF in the mediation of the stress response. The influence of CRF in the amygdala is well established, while less is known of its role in other areas of the forebrain where CRF and CRF(1) receptors are also expressed. In the present study CRF was genetically induced to allow forebrain-restricted expression in a temporally-defined manner at any time during the mouse lifespan. This mouse model may offer the possibility to establish a model of the pathogenesis of recurrent episodes of depression.

Methods: Mice were engineered to carry both the rtTA transcription factor driven by the CamKII alpha promoter and the doxycycline-regulated operator (tetO) upstream of the CRF coding sequence. Molecular, biochemical and behavioural characterisation of this mouse is described.

Results: Following a three-week period of transcriptional induction, double transgenic mice showed approximately 2-fold increased expression of CRF mRNA in the hippocampus and cortex, but not hypothalamus. These changes were associated with 2-fold increase in morning corticosterone levels, although responses to the dexamethasone suppression test or acute stress were unaffected. In contrast, induced mice displayed modestly altered behaviour in the Light and Dark test and Forced Swim test.

Conclusions: Transient induction of CRF expression in mouse forebrain was associated with endocrine and mild anxiety-like behavioural changes consistent with enhanced central CRF neurotransmission. This mouse allows the implementation of regimens with longer or repeated periods of induction which may model the initial stages of the pathology underlying recurrent depressive disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2009.03.015DOI Listing
July 2009

Synthesis and pharmacological characterization of novel druglike corticotropin-releasing factor 1 antagonists.

J Med Chem 2008 Dec;51(23):7370-9

Neurosciences Centre of Excellence for Drug Discovery and Molecular Discovery Research, GlaxoSmithKline Medicines Research Centre, Via A. Fleming 4, 37135 Verona, Italy.

To identify new CRF(1) receptor antagonists, an attempt to modify the bis-heterocycle moiety present in the top region of the dihydropyrrole[2,3]pyridine template was made following new pharmacophoric hypothesis on the CRF(1) receptor antagonists binding pocket. In particular, the 2-thiazole ring, present in the previous series of compounds, was replaced by more hydrophilic non aromatic heterocycles able to make appropriate H-bond interactions with amino acid residues Thr192 and Tyr195. This exploration, followed by an accurate analysis of the substitution of the pendant aryl ring, enabled to identify in vitro potent compounds showing excellent pharmacokinetics and outstanding in vivo activity in animal models of anxiety, both in rodents and primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm800744mDOI Listing
December 2008

Dihydropyrrole[2,3-d]pyridine derivatives as novel corticotropin-releasing factor-1 antagonists: mapping of the receptor binding pocket by in silico docking studies.

J Med Chem 2008 Nov;51(22):7273-86

Neurosciences Centre of Excellence for Drug Discovery and Molecular Discovery Research, GlaxoSmithKline Medicines Research Centre, Via A. Fleming 4, 37135, Verona, Italy.

In an effort to discover novel CRF-1 receptor antagonists exhibiting improved physicochemical properties, a dihydropirrole[2,3]pyridine scaffold was designed and explored in terms of the SAR of the substitution at the pendent phenyl ring and the nature of the heterocyclic moieties present in the upper region of the molecule. Selective and potent compounds have been discovered endowed with reduced ClogP with respect to compounds known in the literature. Of particular relevance was the finding that the in vitro affinity of the series was maintained by reducing the overall lipophilicity. The results achieved by this exploration enabled the formulation of a novel hypothesis on the nature of the receptor binding pocket of this class of CRF-1 receptor antagonists, making use of in silico docking studies of the putative nonpeptidic antagonist binding site set up in house by homology modeling techniques.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm800743qDOI Listing
November 2008

CRF1 receptor activation increases the response of neurons in the basolateral nucleus of the amygdala to afferent stimulation.

Front Behav Neurosci 2008 16;2. Epub 2008 Jul 16.

Medicines Research Centre, GlaxoSmithKline S.p.A. Verona, Italy.

The basolateral nucleus (BLA) of the amygdala contributes to the consolidation of memories for emotional or stressful events. The nucleus contains a high density of CRF1 receptors that are activated by corticotropin-releasing factor (CRF). Modulation of the excitability of neurons in the BLA by CRF may regulate the immediate response to stressful events and the formation of associated memories. In the present study, CRF was found to increase the amplitude of field potentials recorded in the BLA following excitatory afferent stimulation, in vitro. The increase was mediated by CRF1 receptors, since it could be blocked by the selective, non-peptide antagonists, NBI30775 and NBI35583, but not by the CRF2-selective antagonist, astressin 2B. Furthermore, the CRF2-selective agonist, urocortin II had no effect on field potential amplitude. The increase induced by CRF was long-lasting, could not be reversed by subsequent administration of NBI35583, and required the activation of protein kinase C. This effect of CRF in the BLA may be important for increasing the salience of aversive stimuli under stressful conditions, and for enhancing the consolidation of associated memories. The results provide further justification for studying the efficacy of selective antagonists of the CRF1 receptor to reduce memory formation linked to emotional or traumatic events, and suggest that these compounds might be useful as prophylactic treatments for stress-related illnesses such as post-traumatic stress disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/neuro.08.002.2008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2525866PMC
December 2009

Social defeat-induced contextual conditioning differentially imprints behavioral and adrenal reactivity: a time-course study in the rat.

Physiol Behav 2007 Nov 31;92(4):734-40. Epub 2007 May 31.

Behavioural Neuroscience, Department of Biology, Psychiatry CEDD GlaxoSmithKline Research Centre, via Alessandro Fleming 4, 37135 Verona, Italy.

The present experiments were based on the rat resident-intruder paradigm and aimed at better understanding the long-term conditioning properties of this social stress model. Intruders were exposed to aggressive conspecifics residents. During 3 daily encounters, intruders were either defeated or threatened by residents, providing the defeated-threatened (DT) and threatened-threatened (TT) groups respectively, or exposed to a novel empty cage (EC). The effect of such exposures was assessed in 3 separate experiments 8, 14, or 21 days following the last session on both behavior and hypothalamus-pituitary-adrenal (HPA) axis parameters. A specific and persistent behavioral conditioning due to social defeat but also to the sole social threat experience was observed as defensive behaviors and anxiety-like behaviors were observed respectively in DT and TT rats, highlighting a lack of habituation for the conditioning properties of this social stressor. On the other hand, at the earlier time points examined a less specific activation of the HPA axis parameters was found, starting to show habituation at day 21 in EC but not in DT or TT rats. These data give further support to the lasting effects of this social stress model, bestowing a special emphasis upon the impact of its psychological component and upon the relevance of its development and maintenance over time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2007.05.063DOI Listing
November 2007

V1b receptors: new probes for therapy.

Authors:
Roberto Arban

Endocrinology 2007 Sep;148(9):4133-5

Department of Biology, GlaxoSmithKline Group, Psychiatry Centre of Excellence for Drug Discovery, Medicines Research Centre, Via Fleming, 4, 37135 Verona, Italy.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-0735DOI Listing
September 2007

SB-649915-B, a novel 5-HT1A/B autoreceptor antagonist and serotonin reuptake inhibitor, is anxiolytic and displays fast onset activity in the rat high light social interaction test.

Neuropsychopharmacology 2007 Oct 14;32(10):2163-72. Epub 2007 Mar 14.

Schizophrenia and Bipolar Research, Psychiatry Centre of Excellence in Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Essex CM19 5AW, UK.

Preclinically, the combination of an SSRI and 5-HT autoreceptor antagonist has been shown to reduce the time to onset of anxiolytic activity compared to an SSRI alone. In accordance with this, clinical data suggest the coadministration of an SSRI and (+/-) pindolol can decrease the time to onset of anxiolytic/antidepressant activity. Thus, the dual-acting novel SSRI and 5-HT(1A/B) receptor antagonist, SB-649915-B, has been assessed in acute and chronic preclinical models of anxiolysis. SB-649915-B (0.1-1.0 mg/kg, i.p.) significantly reduced ultrasonic vocalization in male rat pups separated from their mothers (ED(50) of 0.17 mg/kg). In the marmoset human threat test SB-649915-B (3.0 and 10 mg/kg, s.c.) significantly reduced the number of postures with no effect on locomotion. In the rat high light social interaction (SI), SB-649915-B (1.0-7.5 mg/kg, t.i.d.) and paroxetine (3.0 mg/kg, once daily) were orally administered for 4, 7, and 21 days. Ex vivo inhibition of [(3)H]5-HT uptake was also measured following SI. SB-649915-B and paroxetine had no effect on SI after 4 days. In contrast to paroxetine, SB-649915-B (1.0 and 3.0 mg/kg, p.o., t.i.d.) significantly (p<0.05) increased SI time with no effect on locomotion, indicative of an anxiolytic-like profile on day 7. Anxiolysis was maintained after chronic (21 days) administration by which time paroxetine also increased SI significantly. 5-HT uptake was inhibited by SB-649915-B at all time points to a similar magnitude as that seen with paroxetine. In conclusion, SB-649915-B is acutely anxiolytic and reduces the latency to onset of anxiolytic behavior compared to paroxetine in the SI model.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301341DOI Listing
October 2007

Cyclopenta[d]pyrimidines and dihydropyrrolo[2,3-d]pyrimidines as potent and selective corticotropin-releasing factor 1 receptor antagonists.

ChemMedChem 2007 Apr;2(4):528-40

GlaxoSmithKline Medicines Center, Psychiatry CEDD, Via A. Fleming 4, 37135 Verona, Italy.

Two new classes of potent and selective CRF(1) receptor antagonists are presented. Exploration of general templates 3 and 4 through modifications of the top amine and bottom phenyl substituents led to optimization of the in vitro affinity and pharmacokinetic profiles. The typical alkyl chains present in the top region of CRF(1) antagonists were replaced by substituted heteroaryl moieties, leading to a dramatic improvement of the metabolic stability. This improvement was apparent when the compounds were dosed in vivo: several compounds exhibited low plasma clearance, good oral bioavailability, and high brain penetration. As a consequence of their outstanding pharmacokinetic profiles, these CRF(1) antagonists, as exemplified by compound 4 fi (4-(4-bromo-3-methyl-1H-pyrazol-1-yl)-7-(2,4-dichlorophenyl)-2-methyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidine), produced a dose-dependent "anxiolytic-like" effect when administered orally, decreasing the vocalization of rat pups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.200600257DOI Listing
April 2007

Anxiolytic-like effect of the selective neuropeptide Y Y2 receptor antagonist BIIE0246 in the elevated plus-maze.

Peptides 2006 Dec 7;27(12):3202-7. Epub 2006 Sep 7.

Department of Biology, Psychiatry CEDD, GlaxoSmithKline Medicine Research Centre, via Fleming 4, 37100 Verona, Italy.

The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2006.07.020DOI Listing
December 2006

Conditioning properties of social subordination in rats: behavioral and biochemical correlates of anxiety.

Horm Behav 2006 Aug 24;50(2):245-51. Epub 2006 Apr 24.

Behavioural Neuroscience Department, GlaxoSmithKline S.p.A, Psychiatry CEDD, Via Alessandro Fleming 4, 37135 Verona, Italy.

To develop a socially based model of anxiety, the contextual fear conditioning properties of social defeat were examined in rats. Social threat consisted of exposing intruders to aggressive residents in resident home cage, separated by a partition. During 3 daily encounters, intruders were either defeated or threatened by residents, providing the defeated-threatened (DT) and threatened-threatened (TT) groups respectively. On Day 4, both DT and TT animals were subjected to a social threat only. Additional animals received a 4-day exposure to a novel empty cage (EC group). Further DT, TT, and EC rats were confronted to a different context on Day 4. DT rats exhibited a robust and context-specific anxiety-like response, characterized by significant behavioral and biochemical alterations. DT rats showed increased risk assessment and decreased exploration compared to TT and EC rats that in turn were not different towards each other. DT and TT rats exhibited increased ACTH levels, while only DT rats showed enhanced corticosterone and decreased testosterone levels compared to EC. These differences were context-specific since they were absent confronting animals to a different context and since they were not long lasting. Overall, these data demonstrate the induction of an anxiety-like state in rats through a context conditioning process based upon social factors. The social basis of this paradigm offers good face validity with anxiety disorders, which in humans are mainly related to social factors and associated with HPA axis deregulations. The present procedure may provide a useful experimental model to further investigate the neurobiological mechanisms underlying anxiety-related disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yhbeh.2006.03.007DOI Listing
August 2006

Characterisation of the selective 5-HT1B receptor antagonist SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): in vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity.

Neuropharmacology 2006 Jun 31;50(8):975-83. Epub 2006 Mar 31.

Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park (North), 3rd Avenue, Harlow, Essex CM19 5AW, UK.

The 5-HT1B receptor has attracted significant interest as a potential target for the development of therapeutics for the treatment of affective disorders such as anxiety and depression. Here we present the in vivo characterisation of a novel, selective and orally bioavailable 5-HT1B receptor antagonist, SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride). SB-616234-A reversed the 5-HT1/7 receptor agonist, SKF-99101H-induced hypothermia in guinea pigs in a dose related manner with an ED50 of 2.4 mg/kg p.o. Using in vivo microdialysis in freely moving guinea pigs, SB-616234-A (3-30 mg/kg p.o.) caused a dose-related increase in extracellular 5-HT in the dentate gyrus. Evaluation of antidepressant- and anxiolytic-like effects of this 5-HT1B receptor antagonist was performed in a variety of models and species. SB-616234-A produced a decrease in immobility time in the mouse forced swim test; an effect suggestive of antidepressant activity. Furthermore, SB-616234-A produced dose-related anxiolytic effects in both rat and guinea pig maternal separation-induced vocalisation models with an ED50 of 1.0 and 3.3 mg/kg i.p., respectively (vs fluoxetine treatment ED50 = 2.2 mg/kg i.p. in both species). Also a significant reduction in posturing behaviours was observed in the human threat test in marmosets; an effect indicative of anxiolytic activity. In summary, SB-616234-A is a novel, potent and orally bioavailable 5-HT1B receptor antagonist which exhibits a neurochemical and behavioural profile that is consistent with both anxiolytic- and antidepressant-like activity in a variety of species. Taken together these data suggest that SB-616234-A may have therapeutic efficacy in the treatment of affective disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2006.01.010DOI Listing
June 2006

Single exposure to social defeat increases corticotropin-releasing factor and glucocorticoid receptor mRNA expression in rat hippocampus.

Brain Res 2006 Jan 15;1067(1):25-35. Epub 2005 Dec 15.

Department of Medicine and Public Health, Section of Pharmacology, University of Verona, Verona, Italy.

Stressful life events are able to induce long-term modifications in physiological and neuroendocrine parameters that are related to the onset of several psychiatric disorders. To gain information on molecular modifications involved in long-term changes triggered by stress, we evaluated gene expression in the hippocampus of rats exposed to a single social defeat session. In the social defeat model, the experimental animal is defeated by a dominant male. The defeat induced an increase in body temperature, in distress vocalisations, in serum corticosterone levels and in anxiety-related behaviour measured with an open field test applied 6 h after the exposure to the dominant rat. In the open field test, anxiety-related behaviours were not detectable anymore 30 h after the exposure to the dominant rat and mRNA levels were evaluated at this time-point. The mRNA levels of genes modulated by stress (corticotropin-releasing factor; corticotropin-releasing factor receptor 1; corticotropin-releasing factor binding protein; mineralocorticoid and glucocorticoid receptors; Ca2+/calmodulin-dependent protein kinase-like kinase; Krox20; Bcl-2) and control genes (glyceraldehyde-3-phosphate dehydrogenase; beta-actin and cyclophilin A) were measured with real-time reverse transcription polymerase chain reaction. Corticotropin-releasing factor and glucocorticoid receptor mRNA levels were significantly modulated by the stress procedure, both genes showing an increase in rats exposed to a social defeat. No expression level differences were detected for the other genes. In conclusion, we report that 30 h after an acute social stress, a modification in mRNA levels can be detected in rat hippocampus, thus suggesting potential candidate genes involved in mediating long-term responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2005.10.002DOI Listing
January 2006

Selectivity of d[Cha4]AVP and SSR149415 at human vasopressin and oxytocin receptors: evidence that SSR149415 is a mixed vasopressin V1b/oxytocin receptor antagonist.

Br J Pharmacol 2005 Nov;146(5):744-51

Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline Group, Medicines Research Centre, Verona, Italy.

1 A possible role of arginine vasopressin (AVP) V(1b) receptor subtype in stress-related disorders has been recently highlighted by the discovery of the agonist [1-deamino-4-cyclohexylalanine] AVP (d[Cha(4)]AVP) and the antagonist SSR149415. Both compounds have been proposed to target specifically V(1b) receptors, since the reported affinities for the related V(1a), V(2) and oxytocin receptors are in the micromolar or submicromolar range. In the present study, we further investigated the binding affinities of d[Cha(4)]AVP and SSR149415 at recombinant human vasopressin V(1b) (hV(1b)) and oxytocin (hOT) receptors expressed in Chinese hamster ovary (CHO) cells and functional properties of both compounds at hV(1b), hV(1a), hV(2) and hOT receptors. 2 d[Cha(4)]AVP bound to hV(1b) receptors and hOT receptors with pK(i) values of 9.68+/-0.06 and 7.68+/-0.09, respectively. SSR149415 showed pK(i) values of 9.34+/-0.06 at hV(1b) and 8.82+/-0.16 at hOT receptors. 3 d[Cha(4)]AVP stimulated [Ca(2+)](i) increase in hV(1b)-CHO cells with a pEC(50) value of 10.05+/-0.15. It showed pEC(50) values of 6.53+/-0.17 and 5.92+/-0.02 at hV(1a) and hV(2) receptors, respectively, and behaved as a weak antagonist at hOT receptors (pK(B)=6.31+/-0.12). SSR149415 inhibited the agonist-induced [Ca(2+)](i) increase with pK(B) values of 9.19+/-0.07 in hV(1b)-CHO and 8.72+/-0.15 in hOT-CHO cells. A functional pK(i) value of 7.23+/-0.10 was found for SSR1494151 at hV(1a) receptors, whereas it did not inhibit 20 nM AVP response at hV(2) receptors up to 3 microM. 4 Data obtained confirmed the high potency and selectivity of d[Cha(4)]AVP at hV(1b) receptors, but revealed that SSR149415, in addition to the high potency at hV(1b) receptors, displays a significant antagonism at hOT receptors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.bjp.0706383DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751202PMC
November 2005