Publications by authors named "Robert Weingart"

13 Publications

  • Page 1 of 1

Regulation of Cx45 hemichannels mediated by extracellular and intracellular calcium.

Pflugers Arch 2012 Sep 26;464(3):249-59. Epub 2012 Jun 26.

Department of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.

Connexin45 (Cx45) hemichannels (HCs) open in the absence of Ca(2+) and close in its presence. To elucidate the underlying mechanisms, we examined the role of extra- and intracellular Ca(2+) on the electrical properties of HCs. Experiments were performed on HeLa cells expressing Cx45 using electrical (voltage clamp) and optical (Ca(2+) imaging) methods. HCs exhibit a time- and voltage-dependent current (I(hc)), activating with depolarization and inactivating with hyperpolarization. Elevation of [Ca(2+)](o) from 20 nM to 2 μM reversibly decreases I(hc), decelerates its rate of activation, and accelerates its deactivation. Our data suggest that [Ca(2+)](o) modifies the channel properties by adhering to anionic sites in the channel lumen and/or its outer vestibule. In this way, it blocks the channel pore and reversibly lowers I(hc) and modifies its kinetics. Rapid lowering of [Ca(2+)](o) from 2 mM to 20 nM, achieved early during a depolarizing pulse, led to an outward I(hc) that developed with virtually no delay and grew exponentially in time paralleled by unaffected [Ca(2+)](i). A step increase of [Ca(2+)](i) evoked by photorelease of Ca(2+) early during a depolarizing pulse led to a transient decrease of I(hc) superimposed on a growing outward I(hc); a step decrease of [Ca(2+)](i) elicited by photoactivation of a Ca(2+) scavenger provoked a transient increase in I(hc). Hence, it is tempting to assume that Ca(2+) exerts a direct effect on Cx45 hemichannels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-012-1133-8DOI Listing
September 2012

Influence of v5/6-His tag on the properties of gap junction channels composed of connexin43, connexin40 or connexin45.

J Membr Biol 2011 Apr 19;240(3):139-50. Epub 2011 Mar 19.

Institute of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.

HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V(j)-sensitive gating of I(j) (V(j), gap junction voltage; I(j), gap junction current), (2) contribution and (3) kinetics of I(j) deactivation and (4) single-channel conductance. The first three reflect alterations of fast V(j) gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-011-9352-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069306PMC
April 2011

Functional differences between human Cx37 polymorphic hemichannels.

J Mol Cell Cardiol 2009 Apr 7;46(4):499-507. Epub 2009 Jan 7.

Department of Internal Medicine, Division of Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

A polymorphism in the human Cx37 gene (C1019T), resulting in a non-conservative amino acid change in the regulatory C-terminus of the Cx37 protein (P319S), has been proposed as a prognostic marker for atherosclerosis. We have recently demonstrated that Cx37 hemichannels control the initiation of atherosclerotic plaque development by regulating ATP-dependent monocyte adhesion in atherosclerosis-susceptible apolipoprotein E-deficient mice. In this study, we have measured the electrical properties of Cx37 hemichannels (HCs) and gap junction channels (GJCs) with voltage-clamp methods. To this end, we have transfected hCx37-P319, hCx37-S319 or empty pIRES-eGFP vector cDNA into communication-deficient HeLa cells. In clones expressing similar levels of Cx37, exposure of single cells to low-Ca(2+) solution induced a voltage-sensitive HC current. The analysis yielded a bell-shaped function g(hc)=f(V(m)) (g(hc): normalized conductance at steady state; V(m): membrane potential) with a maximum around V(m)=-30 mV. The peak g(hc) of Cx37-P319 was 3-fold larger than that of Cx37-S319 HCs. Experiments on cell pairs revealed that Cx37-P319 GJCs exhibited a 1.5-fold larger unitary conductance than Cx37-S319 GJCs. Hence, the larger peak g(hc) of the former may reflect a larger conductance of their HCs. Using the same clones, we found that Cx37-P319 cells released more ATP and were less adhesive than Cx37-S319 cells. The reduction in adhesiveness of Cx37-expressing cells was prevented by extracellular apyrase. We conclude that the differences in biophysical properties between polymorphic HCs may be responsible for inequality in ATP release between Cx37-P319 and Cx37-S319 cells, which results in differential cell adhesion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2008.12.018DOI Listing
April 2009

Gap junction channels and cardiac impulse propagation.

J Membr Biol 2007 Aug 28;218(1-3):13-28. Epub 2007 Jul 28.

Institute of Physiology, University of Bern, Bühlplatz 5, Bern, Switzerland.

The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-007-9046-8DOI Listing
August 2007

Subconductance states of Cx30 gap junction channels: data from transfected HeLa cells versus data from a mathematical model.

Biophys J 2006 Sep 16;91(6):2337-48. Epub 2006 Jun 16.

Department of Cardiology, University Hospital Bern, CH-3012 Bern, Switzerland.

Human HeLa cells expressing mouse connexin30 were used to study the electrical properties of gap junction channel substates. Experiments were performed on cell pairs using a dual voltage-clamp method. Single-channel currents revealed discrete levels attributable to a main state, a residual state, and five substates interposed, suggesting the operation of six subgates provided by the six connexins of a gap junction hemichannel. Substate conductances, gamma(j,substate), were unevenly distributed between the main-state and the residual-state conductance (gamma(j,main state) = 141 pS, gamma(j,residual state) = 21 pS). Activation of the first subgate reduced the channel conductance by approximately 30%, and activation of subsequent subgates resulted in conductance decrements of 10-15% each. Current transitions between the states were fast (<2 ms). Substate events were usually demarcated by transitions from and back to the main state; transitions among substates were rare. Hence, subgates are recruited simultaneously rather than sequentially. The incidence of substate events was larger at larger gradients of V(j). Frequency and duration of substate events increased with increasing number of synchronously activated subgates. Our mathematical model, which describes the operation of gap junction channels, was expanded to include channel substates. Based on the established V(j)-sensitivity of gamma(j,main state) and gamma(j,residual state), the simulation yielded unique functions gamma(j,substate) = f(V(j)) for each substate. Hence, the spacing of subconductance levels between the channel main state and residual state were uneven and characteristic for each V(j).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1529/biophysj.106.084186DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557582PMC
September 2006

Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels.

Pflugers Arch 2006 Jul 8;452(4):396-406. Epub 2006 Apr 8.

Department of Physiology, University of Bern, Bühlplatz 5, CH-3012, Bern, Switzerland.

Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca(2+)](o) from 2 mM to 20 nM evoked an extra current, I (m), putatively carried by Cx45 hemichannels. However, the variability of I (m) (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca(2+)](o) normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I (VRAC) activated/deactivated at negative/positive voltage, giving rise to the conductance functions g (VRAC,inst)=f(V (m)) (inst: instantaneous; V (m): membrane potential) and g (VRAC,ss)=f(V (m)) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Cl(-)channel blocker (binding constant K (d)=38 microM, Hill coefficient n=12), but not by the gap junction channel blocker 18alpha-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca(2+)](o) was reduced led to a current typical for Cx45 hemichannels; I (hc) activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18alpha-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g (VRAC,ss)=f(V (m)) and g (hc,ss)=f(V (m)) indicated that the concomitant operation of both currents results in a bell-shaped conductance-voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-006-0046-9DOI Listing
July 2006

The early years of cellular cardiac electrophysiology and Silvio Weidmann (1921-2005).

Heart Rhythm 2006 Mar;3(3):353-9

Department of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2005.11.017DOI Listing
March 2006

Founder of cardiac cellular electrophysiology: honouring Silvio Weidmann, 7 April 1921- 11 July 2005.

J Physiol 2006 Feb 1;570(Pt 3):431-2. Epub 2005 Dec 1.

Department of Physiology, University of Bern, Switzerland.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2005.101550DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479882PMC
February 2006

Electrical propagation in synthetic ventricular myocyte strands from germline connexin43 knockout mice.

Circ Res 2004 Jul 10;95(2):170-8. Epub 2004 Jun 10.

Department of Physiology, University of Bern, Switzerland.

To characterize the role of connexin43 (Cx43) as a determinant of cardiac propagation, we synthesized strands and pairs of ventricular myocytes from germline Cx43-/- mice. The amount of Cx43, Cx45, and Cx40 in gap junctions was analyzed by immunohistochemistry and confocal microscopy. Intercellular electrical conductance, gj, was measured by the dual-voltage clamp technique (DVC), and electrical propagation was assessed by multisite optical mapping of transmembrane potential using a voltage-sensitive dye. Compared with wild-type (Cx43+/+) strands, immunoreactive signal for Cx43 was reduced by 46% in Cx43+/- strands and was absent in Cx43-/- strands. Cx45 signal was reduced by 46% in Cx43+/- strands and to the limit of detection in Cx43-/- strands, but total Cx45 protein levels measured in immunoblots of whole cell homogenates were equivalent in all genotypes. Cx40 was detected in 2% of myocytes. Intercellular conductance, gj, was reduced by 32% in Cx43+/- cell pairs and by 96% in Cx43-/- cell pairs. The symmetrical dependence of gj on transjunctional voltage and properties of single-channel recordings indicated that Cx45 was the only remaining connexin in Cx43-/- cells. Propagation in Cx43-/- strands was very slow (2.1 cm/s versus 52 cm/s in Cx43+/+) and highly discontinuous, with simultaneous excitation within and long conduction delays (2 to 3 ms) between individual cells. Propagation was abolished by 1 mmol/L heptanol, indicating residual junctional coupling. In summary, knockout of Cx43 in ventricular myocytes leads to very slow conduction dependent on the presence of Cx45. Electrical field effect transmission does not contribute to propagation in synthetic strands.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.RES.0000134923.05174.2fDOI Listing
July 2004

Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties.

Pflugers Arch 2004 Jul 27;448(4):363-75. Epub 2004 Mar 27.

Physiologisches Institut, Universität Bern, Bühlplatz 5, 3012, Bern, Switzerland.

HeLa cells expressing rat connexin43 (Cx43) and/or mouse Cx45 were studied with the dual voltage-clamp technique. Different types of cell pairs were established and their gap junction properties determined, i.e. the dependence of the instantaneous and steady-state conductances (gj,inst, gj,ss) on the transjunctional voltage (Vj) and the kinetics of inactivation of the gap junction current (Ij). Pairs of singly transfected cells showed homogeneous behaviour at both Vj polarities. Homotypic Cx43-Cx43 and Cx45-Cx45 cell pairs yielded distinct symmetrical functions gj,inst=f(Vj) and gj,ss=f(Vj). Heterotypic Cx43-Cx45 preparations exhibited asymmetric functions gj,inst=f(Vj) and gj,ss=f(Vj) suggesting that connexons Cx43 and Cx45 gate with positive and negative Vj, respectively. Preparations containing a singly (Cx43 or Cx45) or doubly (Cx43/45) transfected cell showed quasi-homogeneous behaviour at one Vj polarity and heterogeneous behaviour at the other polarity. The former yielded Boltzmann parameters intermediate between those of Cx43-Cx43, Cx45-Cx45 and Cx43-Cx45 preparations; the latter could not be explained by homotypic and heterotypic combinations of homomeric connexons. Each pair of doubly transfected cells (Cx43/Cx45) yielded unique functions gj,inst=f(Vj) and gj,ss=f(Vj). This can not be explained by combinations of homomeric connexons. We conclude that Cx43 and Cx45 form homomeric-homotypic, homomeric-heterotypic channels as well as heteromeric-homotypic and heteromeric-heterotypic channels. This has implications for the impulse propagation in specific areas of the heart.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-004-1250-0DOI Listing
July 2004

The electrical behaviour of rat connexin46 gap junction channels expressed in transfected HeLa cells.

Pflugers Arch 2003 Sep 12;446(6):714-27. Epub 2003 Jul 12.

Department of Physiology, University of Bern, Bühlplatz 5, 3012, Bern, Switzerland.

Pairs of human HeLa cells expressing rat connexin46 were used to study the electrical properties of gap junction channels with the dual voltage-clamp method. The steady-state conductance ( g(j,ss)) had a bell-shaped dependence on transjunctional voltage ( V(j)). The parameters of the Boltzmann fit were: V(j,0)=42 mV, g(j,min)=0.12, z=2.5 (pipette solution: K(+) aspartate(-); 27 degrees C). The Boltzmann parameters were sensitive to the ionic composition of the pipette solution (KCl, K(+) aspartate(-), TEA(+) Cl(-), TEA(+) aspartate(-)). The V(j)-dependent inactivation of the junctional current I(j) was approximated by single exponentials (exceptions: two exponentials with KCl at V(j)>or=75 mV and K(+) aspartate(-) at V(j)=125 mV). The time constant of inactivation (tau(i)) decreased with increasing V(j) and was sensitive to the pipette solution. The larger the ions, the slower the inactivation. Recovery from inactivation followed a single exponential. The time constant of recovery (tau(r)) increased with increasing V(j). Single-channel currents showed a main state, several substates and a residual state. The corresponding conductances gamma(j,main) and gamma(j,residual) decreased slightly with increasing V(j); extrapolation to V(j)=0 mV yielded values of 152 and 28 pS, respectively (K(+) aspartate(-); 37 degrees C). The values of gamma(j,main) and gamma(j,residual) were dependent on pipette solution. The ratio gamma(j,main)/gamma(j,residual) increased with increasing ionic size, suggesting that the residual state impairs ion permeation more severely than the main state. The gamma(j,main) data suggest that the ionic selectivity of Cx46 channels may be controlled primarily by ionic size. Compared with hemichannel results, docking of connexons may modify the channel structure and thereby affect the ionic selectivity of gap junction channels. The open channel probability at steady state ( P(o)) decreased with increasing V(j). The parameters of the Boltzmann fit were: V(j,0)=41 mV, z=2.2 (K(+) aspartate(-); 27 degrees C).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-003-1129-5DOI Listing
September 2003

The electrophysiology of gap junctions and gap junction channels and their mathematical modelling.

Biol Cell 2002 Nov;94(7-8):501-10

Department of Cardiology, Swiss Cardiovascular Center, Inselspital, CH-3010, Bern, Switzerland.

In most tissues of vertebrates, gap junctions control the exchange of ions and small molecules between adjacent cells, thus co-ordinating the cellular activities. The application of the dual voltage-clamp method to cell pair preparations enables one to elucidate the electrical properties of gap junctions and gap junction channels. The conductive and kinetic data obtained at the multichannel and single channel level led to a generalised concept for the operation of gap junction channels. Based on the biological data gained in this way, a mathematical model has been developed. This model is versatile and allows to simulate the electrophysiological behaviour of different types of vertebrate gap junctions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0248-4900(02)00022-9DOI Listing
November 2002

Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts.

Pflugers Arch 2002 Mar 15;443(5-6):676-89. Epub 2002 Jan 15.

Institute for Cell Biology, ETH Hönggerberg, 8093 Zurich, Switzerland.

Gap junctions were assayed during re-differentiation of adult rat cardiomyocytes in long-term culture to gain insight into the processes of remodeling. Double immunostaining allowed the localization of connexins Cx40, Cx43, and Cx45 between myocytes and demonstrated co-expression and co-localization in individual cells and gap junction plaques, respectively. Immunoblots showed differential time-dependent changes in connexin expression and phosphorylation. The total amount of connexins and the ratio of phosphorylated/non-phosphorylated isoforms gradually increased during the re-establishment of intercellular communication. Dual voltage-clamp studies showed the involvement of several types of gap junction channels. Multichannel currents yielded diverse spectra of g(j,inst)=f( V(j)) and g(j,ss)=f( V(j)) relationships ( g(j,inst): instantaneous gap junction conductance; g(j,ss): conductance at steady state; V(j): transjunctional voltage), indicative of homotypic and heterotypic channels. Single-channel currents revealed two prominent conductances reflecting gamma(j,main) and gamma(j,residual). The histograms of gamma(j,main) showed four discrete peaks (41-44, 59-61, 70-76, and 100-107 pS) attributable to a combination of Cx45-Cx45, Cx40-Cx45 and Cx43-Cx45 channels (1st peak), Cx43-Cx43 and Cx40-Cx43 channels (2nd peak), Cx43-Cx43 channels (3rd peak) and Cx40-Cx40 and Cx40-Cx43 channels (4th peak). However, the presence of heteromeric channels cannot be excluded. The data are consistent with an up-regulation of Cx45 and Cx43 during re-differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-001-0747-zDOI Listing
March 2002